${{\mathit p}}$ ELECTRIC POLARIZABILITY ${{\mathit \alpha}_{{{p}}}}$

INSPIRE   PDGID:
S016EPL
For a very complete review of the "polarizability of the nucleon and Compton scattering," see SCHUMACHER 2005, updated in SCHUMACHER 2019.

See LI 2022D and therein for measurements of the mean square proton electric polarizability radius.
VALUE ($ 10^{-4} $ fm${}^{3}$) DOCUMENT ID TECN  COMMENT
$\bf{ 11.2 \pm0.4}$ OUR AVERAGE
$10.65$ $\pm0.35$ $\pm0.36$
MCGOVERN
2013
RVUE ${{\mathit \chi}}$EFT + Compton scattering
$12.1$ $\pm1.1$ $\pm0.5$ 1
BEANE
2003
EFT + ${{\mathit \gamma}}{{\mathit p}}$
$11.82$ $\pm0.98$ ${}^{+0.52}_{-0.98}$ 2
BLANPIED
2001
LEGS ${{\mathit p}}(\vec\gamma,{{\mathit \gamma}}$), ${{\mathit p}}(\vec\gamma,{{\mathit \pi}^{0}}$), ${{\mathit p}}(\vec\gamma,{{\mathit \pi}^{+}}$)
$11.9$ $\pm0.5$ $\pm1.3$ 3
OLMOSDELEON
2001
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$12.1$ $\pm0.8$ $\pm0.5$ 4
MACGIBBON
1995
RVUE global average
• • We do not use the following data for averages, fits, limits, etc. • •
$12.03$ ${}^{+0.48}_{-0.54}$ 5
PASQUINI
2019
fit of RCS data sets
$11.7$ $\pm0.8$ $\pm0.7$ 6
BARANOV
2001
RVUE Global average
$12.5$ $\pm0.6$ $\pm0.9$
MACGIBBON
1995
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$9.8$ $\pm0.4$ $\pm1.1$
HALLIN
1993
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$10.62$ ${}^{+1.25}_{-1.19}$ ${}^{+1.07}_{-1.03}$
ZIEGER
1992
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
$10.9$ $\pm2.2$ $\pm1.3$ 7
FEDERSPIEL
1991
CNTR ${{\mathit \gamma}}{{\mathit p}}$ Compton scattering
1  BEANE 2003 uses effective field theory and low-energy ${{\mathit \gamma}}{{\mathit p}}$ and ${{\mathit \gamma}}{{\mathit d}}$ Compton-scattering data. It also gets for the isoscalar polarizabilities (see the erratum) $\alpha _{\mathit N}$= ($13.0$ $\pm1.9$ ${}^{+3.9}_{-1.5}$) $ \times 10^{-4}$ fm${}^{3}$ and $\beta _{\mathit N}$= ($-1.8$ $\pm1.9$ ${}^{+2.1}_{-0.9}$) $ \times 10^{-4}$ fm${}^{3}$.
2  BLANPIED 2001 gives ${{\mathit \alpha}_{{{p}}}}+{{\mathit \beta}_{{{p}}}}$ and ${{\mathit \alpha}_{{{p}}}}−{{\mathit \beta}_{{{p}}}}$. The separate ${{\mathit \alpha}_{{{p}}}}$ and ${{\mathit \beta}_{{{p}}}}$ are provided to us by A.$~$Sandorfi. The first error above is statistics plus systematics; the second is from the model.
3  This OLMOSDELEON 2001 result uses the TAPS data alone, and does not use the (re-evaluated) sum-rule constraint that ${{\mathit \alpha}}+{{\mathit \beta}}$= ($13.8$ $\pm0.4$) $ \times 10^{-4}~$fm${}^{3}$. See the paper for a discussion.
4  MACGIBBON 1995 combine the results of ZIEGER 1992, FEDERSPIEL 1991, and their own experiment to get a ``global average'' in which model errors and systematic errors are treated in a consistent way. See MACGIBBON 1995 for a discussion.
5  PASQUINI 2019 fit data sets for the unpolarized proton RCS cross section, using fixed-t subtracted dispersion relations and a bootstrap-based fitting technique.
6  BARANOV 2001 combines the results of 10 experiments from 1958 through 1995 to get a global average that takes into account both systematic and model errors and does not use the theoretical constraint on the sum $\alpha _{{{\mathit p}}}+\beta _{{{\mathit p}}}$.
7  FEDERSPIEL 1991 obtains for the (static) electric polarizability ${{\mathit \alpha}_{{{p}}}}$, defined in terms of the induced electric dipole moment by $\mathbf {D}$ = 4$\pi \epsilon _{0}{{\mathit \alpha}_{{{p}}}}\mathbf {E}$, the value ($7.0$ $\pm2.2$ $\pm1.3){\times }10^{-4}~$fm${}^{3}$.
References