$\chi _{\mathit b}$ AT HIGH ENERGY

INSPIRE   PDGID:
S051CB
${{\mathit \chi}_{{{b}}}}$ is the average ${{\mathit B}}-{{\overline{\mathit B}}}$ mixing parameter at high-energy ${{\mathit \chi}_{{{b}}}}={{\mathit f}_{{{d}}}^{\,'}}{{\mathit \chi}_{{{d}}}}{+}$ ${{\mathit f}_{{{s}}}^{\,'}}{{\mathit \chi}_{{{s}}}}$ where ${{\mathit f}_{{{d}}}^{\,'}}$ and ${{\mathit f}_{{{s}}}^{\,'}}$ are the fractions of ${{\mathit B}^{0}}$ and ${{\mathit B}_{{{s}}}^{0}}$ hadrons in an unbiased sample of semileptonic ${{\mathit b}}$-hadron decays. We consider here ${{\overline{\mathit \chi}}}$ for hadrons produced in ${{\mathit Z}}$ decays.

VALUE ($ 10^{-2} $) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 12.59 \pm0.42}$ OUR EVALUATION  (from SCHAEL 2006D, eq. 5.39)
$\bf{ 12.6 \pm0.4}$ OUR AVERAGE
$13.12$ $\pm0.49$ $\pm0.42$ 1
ABBIENDI
2003P
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$12.7$ $\pm1.3$ $\pm0.6$ 2
ABREU
2001L
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$11.92$ $\pm0.68$ $\pm0.51$ 3
ACCIARRI
1999D
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$12.1$ $\pm1.6$ $\pm0.6$ 4
ABREU
1994J
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$11.4$ $\pm1.4$ $\pm0.8$ 5
BUSKULIC
1994G
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$12.9$ $\pm2.2$ 6
BUSKULIC
1992B
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$13.2$ $\pm0.1$ $\pm2.4$ 7
ABAZOV
2006S
D0 ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
$15.2$ $\pm0.7$ $\pm1.1$ 8
ACOSTA
2004A
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at $1.8$ TeV
$13.1$ $\pm2.0$ $\pm1.6$ 9
ABE
1997I
CDF Repl. by ACOSTA 2004A
$11.07$ $\pm0.62$ $\pm0.55$ 10
ALEXANDER
1996
OPAL Rep. by ABBIENDI 2003P
$13.6$ $\pm3.7$ $\pm4.0$ 11
UENO
1996
AMY ${{\mathit e}^{+}}{{\mathit e}^{-}}$ at $57.9$ GeV
$14.4$ $\pm1.4$ ${}^{+1.7}_{-1.1}$ 12
ABREU
1994F
DLPH Sup. by ABREU 1994J
$13.1$ $\pm1.4$ 13
ABREU
1994J
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$12.3$ $\pm1.2$ $\pm0.8$
ACCIARRI
1994D
L3 Repl. by ACCIARRI 1999D
$15.7$ $\pm2.0$ $\pm3.2$ 14
ALBAJAR
1994
UA1 $\sqrt {\mathit s }$ = 630 GeV
$12.1$ ${}^{+4.4}_{-4.0}$ $\pm1.7$ 1665 15
ABREU
1993C
DLPH Sup. by ABREU 1994J
$14.3$ ${}^{+2.2}_{-2.1}$ $\pm0.7$ 16
AKERS
1993B
OPAL Sup. by ALEXANDER 1996
$14.5$ ${}^{+4.1}_{-3.5}$ $\pm1.8$ 17
ACTON
1992C
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$12.1$ $\pm1.7$ $\pm0.6$ 18
ADEVA
1992C
L3 Sup. by ACCIARRI 1994D
$17.6$ $\pm3.1$ $\pm3.2$ 1112 19
ABE
1991G
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ $1.8$ TeV
$14.8$ $\pm2.9$ $\pm1.7$ 20
ALBAJAR
1991D
UA1 ${{\mathit p}}{{\overline{\mathit p}}}$ 630 GeV
$13.2$ $\pm22$ ${}^{+1.5}_{-1.2}$ 823 21
DECAMP
1991
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$17.8$ ${}^{+4.9}_{-4.0}$ $\pm2.0$ 22
ADEVA
1990P
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$
$17$ ${}^{+15}_{-8}$ 23, 24
WEIR
1990
MRK2 ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 29 GeV
$21$ ${}^{+29}_{-15}$ 23
BAND
1988
MAC ${\it{}E}^{\it{}ee}_{\rm{}cm}$= 29 GeV
$>2 at 90\%\mathit CL$ 23
BAND
1988
MAC ${\it{}E}^{\it{}ee}_{\rm{}cm}$= 29 GeV
$12.1$ $\pm4.7$ 25, 23
ALBAJAR
1987C
UA1 Repl. by ALBAJAR 1991D
$<12 at 90\%\mathit CL$ 26, 23
SCHAAD
1985
MRK2 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= 29 GeV
1  The average ${{\mathit B}}$ mixing parameter is determined simultaneously with ${{\mathit b}}$ and ${{\mathit c}}$ forward-backward asymmetries in the fit.
2  The experimental systematic and model uncertainties are combined in quadrature.
3  ACCIARRI 1999D uses maximum-likelihood fits to extract ${{\mathit \chi}_{{{b}}}}$ as well as the $\mathit A{}^{{{\mathit b}}}_{\mathit FB}$ in ${{\mathit Z}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ events containing prompt leptons.
4  This ABREU 1994J result is from 5182 ${{\mathit \ell}}{{\mathit \ell}}$ and 279 ${{\mathit \Lambda}}{{\mathit \ell}}$ events. The systematic error includes $0.004$ for model dependence.
5  BUSKULIC 1994G data analyzed using ${{\mathit e}}{{\mathit e}}$, ${{\mathit e}}{{\mathit \mu}}$, and ${{\mathit \mu}}{{\mathit \mu}}$ events.
6  BUSKULIC 1992B uses a jet charge technique combined with electrons and muons.
7  Uses the dimuon charge asymmetry. Averaged over the mix of ${{\mathit b}}$-flavored hadrons.
8  Measurement performed using events containing a dimuon or an ${{\mathit e}}/{{\mathit \mu}}$ pair.
9  Uses di-muon events.
10  ALEXANDER 1996 uses a maximum likelihood fit to simultaneously extract ${{\mathit \chi}}$ as well as the forward-backward asymmetries in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ and ${{\mathit c}}{{\overline{\mathit c}}}$.
11  UENO 1996 extracted $\chi $ from the energy dependence of the forward-backward asymmetry.
12  ABREU 1994F uses the average electric charge sum of the jets recoiling against a ${{\mathit b}}$-quark jet tagged by a high $\mathit p_{\mathit T}$ muon. The result is for ${{\overline{\mathit \chi}}}$ = ${{\mathit f}_{{{d}}}}{{\mathit \chi}_{{{d}}}}+0.9{{\mathit f}_{{{s}}}}{{\mathit \chi}_{{{s}}}}$.
13  This ABREU 1994J result combines ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \Lambda}}{{\mathit \ell}}$, and jet-charge ${{\mathit \ell}}$ (ABREU 1994F) analyses. It is for ${{\overline{\mathit \chi}}}$ = $\mathit f_{\mathit d}{{\mathit \chi}_{{{d}}}}+0.96\mathit f_{\mathit s}{{\mathit \chi}_{{{s}}}}$.
14  ALBAJAR 1994 uses dimuon events. Not independent of ALBAJAR 1991D.
15  ABREU 1993C data analyzed using ${{\mathit e}}{{\mathit e}}$, ${{\mathit e}}{{\mathit \mu}}$, and ${{\mathit \mu}}{{\mathit \mu}}$ events.
16  AKERS 1993B analysis performed using dilepton events.
17  ACTON 1992C uses electrons and muons. Superseded by AKERS 1993B.
18  ADEVA 1992C uses electrons and muons.
19  ABE 1991G measurement of $\chi $ is done with ${{\mathit e}}{{\mathit \mu}}$ and ${{\mathit e}}{{\mathit e}}$ events.
20  ALBAJAR 1991D measurement of $\chi $ is done with dimuons.
21  DECAMP 1991 done with opposite and like-sign dileptons. Superseded by BUSKULIC 1992B.
22  ADEVA 1990P measurement uses ${{\mathit e}}{{\mathit e}}$, ${{\mathit \mu}}{{\mathit \mu}}$, and ${{\mathit e}}{{\mathit \mu}}$ events from 118k events at the ${{\mathit Z}}$. Superseded by ADEVA 1992C.
23  These experiments are not in the average because the combination of ${{\mathit B}_{{{s}}}}$ and ${{\mathit B}_{{{d}}}}$ mesons which they see could differ from those at higher energy.
24  The WEIR 1990 measurement supersedes the limit obtained in SCHAAD 1985. The 90$\%$ CL are $0.06$ and $0.38$.
25  ALBAJAR 1987C measured $\chi $ = ( ${{\overline{\mathit B}}^{0}}$ $\rightarrow$ ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ X) divided by the average production weighted semileptonic branching fraction for ${{\mathit B}}$ hadrons at 546 and 630 GeV.
26  Limit is average probability for hadron containing ${{\mathit B}}$ quark to produce a positive lepton.
References