${{\mathit B}_{{{sH}}}^{0}}$ MEAN LIFE

INSPIRE   PDGID:
S086TSH
${{\mathit B}_{{{sH}}}^{0}}$ is the heavy mass state of two ${{\mathit B}_{{{s}}}^{0}}$ $\mathit CP$ eigenstates.
VALUE ($ 10^{-12} $ s) DOCUMENT ID TECN  COMMENT
$\bf{ 1.622 \pm0.008}$ OUR EVALUATION  $~~$(Produced by HFLAV)
• • We do not use the following data for averages, fits, limits, etc. • •
$0.99$ ${}^{+0.42}_{-0.07}$ $\pm0.17$ 1
AAD
2023BY
ATLS ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$1.83$ ${}^{+0.23}_{-0.20}$ $\pm0.04$ 1
TUMASYAN
2023A
CMS ${{\mathit p}}{{\mathit p}}$ at 13 TeV
$2.07$ $\pm0.29$ $\pm0.03$ 1
AAIJ
2022
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
$1.70$ ${}^{+0.60}_{-0.43}$ $\pm0.09$ 1
SIRUNYAN
2020AG
CMS ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
$1.677$ $\pm0.034$ $\pm0.011$ 2
SIRUNYAN
2018BY
CMS ${{\mathit p}}{{\mathit p}}$ at 8 TeV
$2.04$ $\pm0.44$ $\pm0.05$ 1
AAIJ
2017AI
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
$1.70$ $\pm0.14$ $\pm0.05$ 3
ABAZOV
2016C
D0 ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
$1.75$ $\pm0.12$ $\pm0.07$ 4
AAIJ
2013AB
LHCB ${{\mathit p}}{{\mathit p}}$ at 7 TeV
$1.652$ $\pm0.024$ $\pm0.024$ 5
AAIJ
2013AR
LHCB ${{\mathit p}}{{\mathit p}}$ at 7 TeV
$1.700$ $\pm0.040$ $\pm0.026$ 6
AAIJ
2012AN
LHCB ${{\mathit p}}{{\mathit p}}$ at 7 TeV
7
AALTONEN
2012D
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
$1.70$ ${}^{+0.12}_{-0.11}$ $\pm0.03$ 6
AALTONEN
2011AB
CDF ${{\mathit p}}{{\overline{\mathit p}}}$ at 1.96 TeV
$1.613$ ${}^{+0.123}_{-0.113}$ 8, 9
AALTONEN
2008J
CDF Repl. by AALTONEN 2012D
$1.58$ ${}^{+0.39}_{-0.42}$ ${}^{+0.01}_{-0.02}$ 9
ABAZOV
2005W
D0 Repl. by ABAZOV 2008AM
$2.07$ ${}^{+0.58}_{-0.46}$ $\pm0.03$ 9
ACOSTA
2005
CDF Repl. by AALTONEN 2008J
1  Measured using ${{\mathit B}_{{{s}}}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ decays which, in the Standard Model, correspond to ${{\mathit B}_{{{sH}}}^{0}}$ decays. Assumes $-2$ Re(${{\mathit \lambda}}$)/(1 + $\vert {{\mathit \lambda}}\vert ^2$) = 1.
2  Measured using ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ decays with 0.9240 $<$ m(${{\mathit \pi}}{{\mathit \pi}}$) $<$ 1.0204 GeV, which is dominated by the ${{\mathit f}_{{{0}}}{(980)}}$ resonance, making it a $\mathit CP$-odd state.
3  Measured using ${{\mathit J / \psi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ mode with 0.880 $<$ $\mathit m({{\mathit \pi}}{{\mathit \pi}}$) $<$ 1.080 GeV/c${}^{2}$, which is mostly ${{\mathit J / \psi}}{{\mathit f}{(0980)}}$ mode, a pure $\mathit CP$-odd final state.
4  Measured using a pure $\mathit CP$-odd final state ${{\mathit J / \psi}}{{\mathit K}_S^0}$ with the assumption that contributions from penguin diagrams are small.
5  Measured using ${{\mathit B}_{{{s}}}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ decays which, in the limit of ${{\mathit \phi}_{{{s}}}}$ = 0 and $\vert {{\mathit \lambda}}\vert $ = 1, correspond to ${{\mathit B}_{{{sH}}}^{0}}$ decays.
6  Measured using a pure $\mathit CP$-odd final state ${{\mathit J / \psi}}{{\mathit f}_{{{0}}}{(980)}}$.
7  Uses the time-dependent angular analysis of ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \phi}}$ decays assuming $\mathit CP$-violating angle ${{\mathit \beta}_{{{s}}}}$( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \phi}}$) = 0.02.
8  Obtained from $\Delta \Gamma _{s}$ and $\Gamma _{s}$ fit with a correlation of 0.6.
9  Measured using the time-dependent angular analysis of ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \phi}}$ decays.
References