${{\mathit \phi}{(2170)}}$ MASS

INSPIRE   PDGID:
M103M
VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 2164 \pm6}$ OUR AVERAGE
$2178$ $\pm20$ $\pm5$ 1
ABLIKIM
2023AX
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$2190$ $\pm19$ $\pm37$ 2
ABLIKIM
2022L
BES3 $2.0 - 3.08$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}$
$2176$ $\pm24$ $\pm3$ 3
ABLIKIM
2021A
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \eta}}$
$2163.5$ $\pm6.2$ $\pm3.0$ 4
ABLIKIM
2021T
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \eta}}$
$2177.5$ $\pm4.8$ $\pm19.5$ 5
ABLIKIM
2020M
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}}{{\mathit \phi}}$
$2126.5$ $\pm16.8$ $\pm12.4$ 6
ABLIKIM
2020S
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$2215.7$ $\pm8.3$ 7
LICHARD
2023
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \eta}}{{\mathit \gamma}}$
$2169$ $\pm5$ $\pm6$ 8
ZHU
2023A
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \phi}}$
$2273.7$ $\pm5.7$ $\pm19.3$ 9
ABLIKIM
2021AP
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_L^0}$
$2135$ $\pm8$ $\pm9$ 95
ABLIKIM
2019I
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \phi}}{{\mathit f}_{{{0}}}{(980)}}$
$2239.2$ $\pm7.1$ $\pm11.3$ 10
ABLIKIM
2019L
BES3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$
$2200$ $\pm6$ $\pm5$ 471
ABLIKIM
2015H
BES3 ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$2180$ $\pm8$ $\pm8$ 11, 12
LEES
2012F
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$2079$ $\pm13$ ${}^{+79}_{-28}$ 4.8k 13
SHEN
2009
BELL 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$2186$ $\pm10$ $\pm6$ 52
ABLIKIM
2008F
BES ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \phi}}{{\mathit f}_{{{0}}}{(980)}}$
$2125$ $\pm22$ $\pm10$ 483
AUBERT
2008S
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \eta}}{{\mathit \gamma}}$
$2192$ $\pm14$ 116 14
AUBERT
2007AK
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$
$2169$ $\pm20$ 149 14
AUBERT
2007AK
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$
$2175$ $\pm10$ $\pm15$ 201 12, 15
AUBERT,BE
2006D
BABR 10.6 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}}{{\mathit \pi}}{{\mathit \gamma}}$
1  From a fit to the ${{\mathit e}^{+}}{{\mathit e}^{-}}$ cross section between 2.00 and 3.08 GeV with a sum of Breit-Wigner amplitude and a non-resonant contribution.
2  By a simultaneous fit of the ${{\mathit K}_{{{2}}}^{*}{(1430)}^{+}}{{\mathit K}^{-}}$ and ${{\mathit K}^{*}{(892)}^{+}}{{\mathit K}^{-}}$ intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.
3  From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of Breit-Wigner amplitudes, including contributions from ${{\mathit \omega}{(1420)}}$ and ${{\mathit \omega}{(1650)}}/{{\mathit \phi}{(1680)}}$.
4  From a fit to the cross section below 3.5 GeV measured by BaBar and BESIII with a coherent sum of two modified Breit-Wigner amplitudes (${{\mathit \phi}{(1680)}}$ and ${{\mathit \phi}{(2170)}}$) and a nonresonant term.
5  From a fit using a coherent sum of a phase-space modified Breit-Wigner function and a phase-space term.
6  By a simultaneous fit of the intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.
7  From a VDM fit to ZHU 2023 ${{\mathit \eta}}{{\mathit \phi}}{{\mathit \gamma}}$ data with two resonances, ${{\mathit \phi}{(1680)}}$, ${{\mathit \phi}{(2170)}}$, and a third resonance with mass $1850.7$ $\pm5.3$ MeV and width $25$ $\pm35$ MeV of 1.7 $\sigma $ statistical evidence.
8  From the analysis of the combined measurements of ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \phi}}{)}$ from BaBar, Belle, BESIII, CMD3. The statistical significance for ${{\mathit \phi}{(2170)}}$ is 7.2 $\sigma $.
9  From a fit to the cross section between 2.00 and 3.08 GeV with a sum of Breit-Wigner amplitude and a nonresonant contribution. The observed structure can be also due to ${{\mathit \rho}{(2150)}}$.
10  The observed structure can be due to both the ${{\mathit \phi}{(2170)}}$ and ${{\mathit \rho}{(2150)}}$.
11  Fit includes interference with the ${{\mathit \phi}{(1680)}}$.
12  From the ${{\mathit \phi}}{{\mathit f}_{{{0}}}{(980)}}$ component.
13  From a fit with two incoherent Breit-Wigners.
14  From the ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit f}_{{{0}}}{(980)}}$ component.
15  Superseded by LEES 2012F.
References