${\mathit m}_{{{\mathit \Upsilon}{(2S)}}}–{\mathit m}_{{{\mathit \eta}_{{{b}}}{(2S)}}}$

INSPIRE   PDGID:
M200DM
VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
$24.3$ $\pm3.5$ ${}^{+2.8}_{-1.9}$ 26k 1
MIZUK
2012
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ + hadrons
• • We do not use the following data for averages, fits, limits, etc. • •
$48.7$ $\pm2.3$ $\pm2.1$ $11$ $\pm4$ 2, 3, 4
DOBBS
2012
${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}$ hadrons
1  Assuming ${\Gamma}_{{\mathit \eta}_{{{b}}}{(2S)}}$ = 4.9 MeV. Not independent of the corresponding mass measurement.
2  SANDILYA 2013 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 2012 using a sample of ($157.8$ $\pm3.6$) $ \times 10^{6}{{\mathit \Upsilon}{(2S)}}$ decays or about 17 times larger and find no evidence for a signal. Their 90$\%$ C.L. upper limit on the branching fraction B( ${{\mathit \Upsilon}{(2S)}}$ $\rightarrow$ ${{\mathit \eta}_{{{b}}}{(2S)}}{{\mathit \gamma}}$) ${\times }$ $\sum_{i}$B( ${{\mathit \eta}_{{{b}}}{(2S)}}$ $\rightarrow$ ${{\mathit X}_{{{i}}}}$) $<$ $4.9 \times 10^{-6}$, summed over the exclusive hadronic final states ${{\mathit X}_{{{i}}}}$, is an order of magnitude smaller than that reported by DOBBS 2012.
3  Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.
4  Assuming ${\Gamma}_{{\mathit \eta}_{{{b}}}{(2S)}}$ = 5 MeV. Not independent of the corresponding mass measurement.
References