$\mathit CPT$ INVARIANCE

$({\mathit m}_{{{\mathit W}^{+}}}–{\mathit m}_{{{\mathit W}^{-}}})/{\mathit m}_{\mathrm {average}}$ ($-3.7$ $\pm3.5$) $ \times 10^{-4}$
$({\mathit m}_{{{\mathit e}^{+}}}–{\mathit m}_{{{\mathit e}^{-}}})/{\mathit m}_{\mathrm {average}}$ $<8 \times 10^{-9}$ CL=90.0%
$\vert \mathit q_{{{\mathit e}^{+}}}~+~\mathit q_{{{\mathit e}^{-}}}\vert /{{\mathit e}}$ $<4 \times 10^{-8}$
(${\mathit g}_{{{\mathit e}^{+}}}–{\mathit g}_{{{\mathit e}^{-}}}$) $/$ $\mathit g_{{\mathrm {average}}}$ ($-0.5$ $\pm2.1$) $ \times 10^{-12}$
$({\mathit \tau}_{{{\mathit \mu}^{+}}}–{\mathit \tau}_{{{\mathit \mu}^{-}}})/{\mathit \tau}_{\mathrm {average}}$ ($2$ $\pm8$) $ \times 10^{-5}$
$({\mathit g}_{{{\mathit \mu}^{+}}}–{\mathit g}_{{{\mathit \mu}^{-}}})/{\mathit g}_{average}$ ($-1.1$ $\pm1.2$) $ \times 10^{-9}$
(${\mathit m}_{{{\mathit \tau}^{+}}}–{\mathit m}_{{{\mathit \tau}^{-}}})/\mathit m_{{\mathrm {average}}}$ $<2.8 \times 10^{-4}$ CL=90.0%
${\mathit m}_{{{\mathit t}}}$ $−$ ${\mathit m}_{{{\overline{\mathit t}}}}$ $-0.16$ $\pm0.19$ GeV
$({\mathit m}_{{{\mathit \pi}^{+}}}–{\mathit m}_{{{\mathit \pi}^{-}}})/{\mathit m}_{\mathrm {average}}$ ($2$ $\pm5$) $ \times 10^{-4}$
$({\mathit \tau}_{{{\mathit \pi}^{+}}}–{\mathit \tau}_{{{\mathit \pi}^{-}}})/{\mathit \tau}_{\mathrm {average}}$ ($6$ $\pm7$) $ \times 10^{-4}$
$({\mathit m}_{{{\mathit K}^{+}}}–{\mathit m}_{{{\mathit K}^{-}}})/{\mathit m}_{\mathrm {average}}$ ($-0.6$ $\pm1.8$) $ \times 10^{-4}$
$({\mathit \tau}_{{{\mathit K}^{+}}}–{\mathit \tau}_{{{\mathit K}^{-}}})/{\mathit \tau}_{\mathrm {average}}$ $0.0010$ $\pm0.0009$      (S = 1.2)
${{\mathit K}^{\pm}}$ $\rightarrow$ ${{\mathit \mu}^{\pm}}{{\mathit \nu}_{{\mu}}}$ rate difference/sum $-0.0027$ $\pm0.0021$
${{\mathit K}^{\pm}}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}{{\mathit \pi}^{0}}$ rate difference/sum [1] $0.004$ $\pm0.006$
${{\mathit \delta}}$ in ${{\mathit K}^{0}}\text{-}{{\overline{\mathit K}}^{0}}$ mixing
      real part of $\delta $ ($2.5$ $\pm2.3$) $ \times 10^{-4}$
      imaginary part of $\delta $ ($-1.5$ $\pm1.6$) $ \times 10^{-5}$
Re(y), ${{\mathit K}_{{{e3}}}}$ parameter $0.0004$ $\pm0.0025$
Re(x$_{-}$), ${{\mathit K}_{{e3}}}$ parameter $-0.0029$ $\pm0.0020$
$\vert{}{\mathit m}_{{{\mathit K}^{0}}}–{\mathit m}_{{{\overline{\mathit K}}^{0}}}\vert{}/{\mathit m}_{\mathrm {average}}$ [2] $<6 \times 10^{-19}$ CL=90.0%
(${\Gamma}_{{\mathit K}^{0}}−{\Gamma}_{{\overline{\mathit K}}^{0}})/{\mathit m}_{{\mathrm {average}}}$ ($8$ $\pm8$) $ \times 10^{-18}$
phase difference $\phi _{00}$ $−$ $\phi _{+−}$ $0.34$ $\pm0.32$ $^\circ{}$
Re(${2\over 3}\eta _{+−}$ $+$ ${1\over 3}\eta _{00})−{\mathit A_{L}\over 2}$ ($-0.3$ $\pm3.5$) $ \times 10^{-5}$
$\mathit A_{CPT}$( ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ) $0.008$ $\pm0.008$
$\Delta {{\mathit S}_{{CPT}}^{+}}$ (S${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ S${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$) $0.16$ $\pm0.23$
$\Delta {{\mathit S}_{{CPT}}^{-}}$ (S${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ S${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$) $-0.03$ $\pm0.14$
$\Delta {{\mathit C}_{{CPT}}^{+}}$ (C${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ C${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$) $0.14$ $\pm0.17$
$\Delta {{\mathit C}_{{CPT}}^{-}}$ (C${}^{+}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$ $−$ C${}^{-}_{{{\mathit \ell}}{}^{+},{{\mathit K}_S^0} }$) $0.03$ $\pm0.14$
$\vert {\mathit m}_{{{\mathit p}}}−{\mathit m}_{{{\overline{\mathit p}}}}\vert /{\mathit m}_{{{\mathit p}}}$ [3] $<7 \times 10^{-10}$ CL=90.0%
($\vert {\mathit q_{{{\overline{\mathit p}}}}\over {\mathit m}_{{{\overline{\mathit p}}}}}\vert -{\mathit q_{p}\over {\mathit m}_{{{\mathit p}}}})/{\mathit q_{{{\mathit p}}}\over {\mathit m}_{{{\mathit p}}}}$ ($-9$ $\pm9$) $ \times 10^{-11}$
$\vert \mathit q_{{{\mathit p}}}~+~\mathit q_{{{\overline{\mathit p}}}}\vert /{{\mathit e}}$ [3] $<7 \times 10^{-10}$ CL=90.0%
(${\mathit \mu}_{{{\mathit p}}}$ $+$ ${\mathit \mu}_{{{\overline{\mathit p}}}}$) $/$ $\mu _{{{\mathit p}}}$ ($3$ $\pm8$) $ \times 10^{-7}$
(${\mathit m}_{{{\mathit n}}}–{\mathit m}_{{{\overline{\mathit n}}}}$ )/ ${\mathit m}_{{{\mathit n}}}$ ($9$ $\pm6$) $ \times 10^{-5}$
(${\mathit m}_{{{\mathit \Lambda}}}–{\mathit m}_{{{\overline{\mathit \Lambda}}}}$) $/$ ${\mathit m}_{{{\mathit \Lambda}}}$ ($-0.1$ $\pm1.1$) $ \times 10^{-5}$      (S = 1.6)
(${\mathit \tau}_{{{\mathit \Lambda}}}–{\mathit \tau}_{{{\overline{\mathit \Lambda}}}}$) $/$ ${\mathit \tau}_{{{\mathit \Lambda}}}$ $-0.001$ $\pm0.009$
(${\mathit \tau}_{{{\mathit \Sigma}^{+}}}–{\mathit \tau}_{{{\overline{\mathit \Sigma}}^{-}}}$) $/$ ${\mathit \tau}_{{{\mathit \Sigma}^{+}}}$ $-0.0006$ $\pm0.0012$
(${\mathit \mu}_{{{\mathit \Sigma}^{+}}}$ $+$ ${\mathit \mu}_{{{\overline{\mathit \Sigma}}^{-}}}$) $/$ ${\mathit \mu}_{{{\mathit \Sigma}^{+}}}$ $0.014$ $\pm0.015$
(${\mathit m}_{{{\mathit \Xi}^{-}}}–{\mathit m}_{{{\overline{\mathit \Xi}}^{+}}}$) $/$ ${\mathit m}_{{{\mathit \Xi}^{-}}}$ ($-3$ $\pm9$) $ \times 10^{-5}$
(${\mathit \tau}_{{{\mathit \Xi}^{-}}}–{\mathit \tau}_{{{\overline{\mathit \Xi}}^{+}}}$) $/$ ${\mathit \tau}_{{{\mathit \Xi}^{-}}}$ $-0.01$ $\pm0.07$
(${\mathit \mu}_{{{\mathit \Xi}^{-}}}$ + ${\mathit \mu}_{{{\overline{\mathit \Xi}}^{+}}}$) $/$ $\vert {\mathit \mu}_{{{\mathit \Xi}^{-}}}\vert $ $+0.01$ $\pm0.05$
(${\mathit m}_{{{\mathit \Omega}^{-}}}–{\mathit m}_{{{\overline{\mathit \Omega}}^{+}}}$) $/$ ${\mathit m}_{{{\mathit \Omega}^{-}}}$ ($-1$ $\pm8$) $ \times 10^{-5}$
(${\mathit \tau}_{{{\mathit \Omega}^{-}}}–{\mathit \tau}_{{{\overline{\mathit \Omega}}^{+}}}$) $/$ ${\mathit \tau}_{{{\mathit \Omega}^{-}}}$ $0.00$ $\pm0.05$
 
[1] Neglecting photon channels. See, $\mathit e.g.$, A. Pais and S.B. Treiman, Phys. Rev. $\mathbf {D12}$, 2744 (1975).
[2] Derived from measured values of $\phi _{+−}$, $\phi _{{\mathrm {00}}}$, $\vert \eta \vert $, $\vert{}{\mathit m}_{{{\mathit K}_L^0} }–{\mathit m}_{{{\mathit K}_S^0} }\vert{}$, and ${\mathit \tau}_{{{\mathit K}_S^0} }$, as described in the introduction to ``Tests of Conservation Laws.''
[3] The $\vert {\mathit m}_{{{\mathit p}}}−{\mathit m}_{{{\overline{\mathit p}}}}\vert /{\mathit m}_{{{\mathit p}}}$ and $\vert {{\mathit q}_{{p}}}$ + ${{\mathit q}}_{{{\overline{\mathit p}}}}\vert /{{\mathit e}}$ are not independent, and both use the more precise measurement of $\vert \mathit q_{{{\overline{\mathit p}}}}/{\mathit m}_{{{\overline{\mathit p}}}}\vert /(\mathit q_{{{\mathit p}}}/{\mathit m}_{{{\mathit p}}}$).