$\mathit CP$ VIOLATION OBSERVED

Re($\epsilon $) $0.001596$ $\pm0.000013$
   charge asymmetry in ${{\mathit K}_{{\ell3}}^{0}}$ decays
      $\mathit A_{\mathit L}$ = weighted average of $\mathit A_{\mathit L}({{\mathit \mu}}$) and $\mathit A_{\mathit L}({{\mathit e}}$) $0.00332$ $\pm0.00006$
      $\mathit A_{\mathit L}({{\mathit \mu}}$) = [$\Gamma\mathrm {( {{\mathit \pi}^{-}} {{\mathit \mu}^{+}} {{\mathit \nu}_{{\mu}}} )}$ $−$ $\Gamma\mathrm {( {{\mathit \pi}^{+}} {{\mathit \mu}^{-}} {{\overline{\mathit \nu}}_{{\mu}}} )}$]/sum $0.00304$ $\pm0.00025$
      $\mathit A_{\mathit L}({{\mathit e}}$) = [$\Gamma\mathrm {( {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit \nu}_{{e}}} )}$ $−$ $\Gamma\mathrm {( {{\mathit \pi}^{+}} {{\mathit e}^{-}} {{\overline{\mathit \nu}}_{{e}}} )}$]/sum $0.00334$ $\pm0.00007$
   parameters for ${{\mathit K}_L^0}$ $\rightarrow$ 2 ${{\mathit \pi}}$ decay
      $\vert \eta _{00}\vert $ = $\vert $A( ${{\mathit K}_L^0}$ $\rightarrow$ 2 ${{\mathit \pi}^{0}}$ ) / A( ${{\mathit K}_S^0}$ $\rightarrow$ 2 ${{\mathit \pi}^{0}}$ )$\vert $ $0.002243$ $\pm0.000014$
      $\vert \eta _{+−}\vert $ = $\vert $A( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) $/$ A( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ )$\vert $ $0.002226$ $\pm0.000007$
      $\vert \epsilon \vert $ = (2$\vert \eta _{+−}\vert $ + $\vert \eta _{00}\vert $)/3 $0.002228$ $\pm0.000011$      (S = 1.8)
      $\vert \eta _{00}/\eta _{+−}\vert $ [1] $0.9930$ $\pm0.0020$
      Re($\epsilon {{}^\prime}/\epsilon $) = (1$−\vert \eta _{00}/\eta _{+−}\vert $)/3 [1] $0.00168$ $\pm0.00020$      (S = 1.4)
Assuming $\mathit CPT$
      $\phi _{+−}$, phase of $\eta _{+−}$ $43.51$ $\pm0.05$ $^\circ{}$      (S = 1.2)
      $\phi _{00}$, phase of $\eta _{00}$ $43.52$ $\pm0.05$ $^\circ{}$      (S = 1.3)
      $\phi _{\epsilon }$ = (2$\phi _{+−}+\phi _{00}$)/3 $43.52$ $\pm0.05$ $^\circ{}$      (S = 1.2)
Not assuming $\mathit CPT$
      $\phi _{+−}$, phase of $\eta _{+−}$ $43.4$ $\pm0.5$ $^\circ{}$      (S = 1.2)
      $\phi _{00}$, phase of $\eta _{00}$ $43.7$ $\pm0.6$ $^\circ{}$      (S = 1.2)
      $\phi _{\epsilon }$ = (2$\phi _{+−}+\phi _{00}$)/3 $43.5$ $\pm0.5$ $^\circ{}$      (S = 1.3)
$\mathit CP$ asymmetry $\mathit A$ in ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ $0.137$ $\pm0.015$
      $\beta _{\mathit CP}$ from ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ $-0.19$ $\pm0.07$
      $\gamma _{\mathit CP}$ from ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ $0.01$ $\pm0.11$      (S = 1.6)
   parameters for ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$ decay
      $\vert \eta _{+−{{\mathit \gamma}}}\vert $ = $\vert $A( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$ , $\mathit CP$ violating)/A( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$ )$\vert $ $0.00235$ $\pm0.00007$
      $\phi _{+−{{\mathit \gamma}}}$ = phase of $\eta _{+−{{\mathit \gamma}}}$ $44$ $\pm4$ $^\circ{}$
      $\Gamma\mathrm {( {{\mathit K}_L^0} \rightarrow {{\mathit \pi}^{0}} {{\mathit \pi}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $(1.690\pm{0.013})\times 10^{-4}$      (S = 1.4)
      $\Gamma\mathrm {( {{\mathit K}_L^0} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ [2] $(3.844\pm{0.023})\times 10^{-4}$      (S = 1.2)
$\Delta \mathit A{}^{{{\mathit D}^{0}}}_{CP}$ = $\mathit A_{CP}$( ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ) $−$ $\mathit A_{CP}$( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) $-0.00161$ $\pm0.00029$
$\mathit A_{CP}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}}_{CP(+1)}$ ${{\mathit K}^{+}}$ ) $0.120$ $\pm0.014$      (S = 1.4)
$\mathit A_{ADS}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{+}}$ ) $-0.40$ $\pm0.06$
$\mathit A_{CP}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit K}^{+}}$ ) $-0.37$ $\pm0.08$
$\mathit A_{CP}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit f}_{{2}}{(1270)}}{{\mathit K}^{+}}$ ) $-0.68$ ${}^{+0.19}_{-0.17}$
$\mathit A_{CP}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit K}^{+}}$ ) $0.37$ $\pm0.10$
$\mathit A_{CP}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit f}_{{0}}{(1370)}}{{\mathit \pi}^{+}}$ ) $0.72$ $\pm0.22$
$\gamma $ $71.1$ ${}^{+4.6}_{-5.3}$ $^\circ{}$
r$_{B}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit K}^{+}}$ ) $0.0993$ $\pm0.0046$
$\delta _{B}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit K}^{+}}$ ) $129.6$ ${}^{+5.0}_{-6.0}$ $^\circ{}$
r$_{B}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit K}^{*+}}$ ) $0.076$ $\pm0.020$
$\delta _{B}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit K}^{*+}}$ ) $98$ ${}^{+18}_{-37}$ $^\circ{}$
r$_{B}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit K}^{+}}$ ) $0.140$ $\pm0.019$
$\delta _{B}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{*0}}{{\mathit K}^{+}}$ ) $319.2$ ${}^{+7.7}_{-8.7}$ $^\circ{}$
$\mathit A_{CP}$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ) $-0.083$ $\pm0.004$
$\mathit A_{CP}$( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit K}^{*}{(892)}^{0}}$ ) $0.19$ $\pm0.05$
$\mathit S_{ {{\mathit D}^{*}{(2010)}^{-}} {{\mathit D}^{+}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit D}^{+}}$ ) $-0.72$ $\pm0.15$
$\mathit S_{ {{\mathit D}^{*}{(2010)}^{+}} {{\mathit D}^{-}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{+}}{{\mathit D}^{-}}$ ) $-0.73$ $\pm0.14$
$\mathit S_{ {{\mathit D}^{*+}} {{\mathit D}^{*-}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit D}^{*-}}$ ) $-0.59$ $\pm0.14$      (S = 1.8)
$\mathit S_{+}$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*+}}{{\mathit D}^{*-}}$ ) $-0.73$ $\pm0.09$
$\mathit S_{ {{\mathit D}^{+}} {{\mathit D}^{-}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{+}}{{\mathit D}^{-}}$ ) $-0.76$ ${}^{+0.15}_{-0.13}$      (S = 1.2)
$\mathit S_{ {{\mathit J / \psi}{(1S)}} {{\mathit \pi}^{0}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}$ ) $-0.88$ $\pm0.32$      (S = 2.2)
$\mathit S$( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \rho}^{0}}$ ) $-0.66$ ${}^{+0.16}_{-0.12}$
$\mathit S_{ {{\mathit K}^{0}} {{\mathit \pi}^{0}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{0}}$ ) $0.58$ $\pm0.17$
$\mathit S_{ {{\mathit \eta}^{\,'}} {{\mathit K}^{0}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}}{{\mathit K}^{0}}$ ) $0.63$ $\pm0.06$
$\mathit S_{ {{\mathit K}^{+}} {{\mathit K}^{-}} {{\mathit K}_S^0} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ nonresonant) $-0.66$ $\pm0.11$
$\mathit S_{ {{\mathit K}^{+}} {{\mathit K}^{-}} {{\mathit K}_S^0} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ inclusive) $-0.65$ $\pm0.12$
$\mathit S_{ {{\mathit \pi}} {{\mathit \pi}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) $-0.65$ $\pm0.04$
$\Delta \mathit C_{ {{\mathit \rho}} {{\mathit \pi}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{+}}{{\mathit \pi}^{-}}$ ) $0.27$ $\pm0.06$
$\mathit S_{ {{\mathit \eta}_{{c}}} {{\mathit K}_S^0} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \eta}_{{c}}}{{\mathit K}_S^0}$ ) $0.93$ $\pm0.17$
sin$(2\beta )$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit K}_S^0}$ ) $0.698$ $\pm0.027$      (S = 1.6)
$\mathit S_{ {{\mathit J / \psi}{(nS)}} {{\mathit K}^{0}} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(nS)}}{{\mathit K}^{0}}$ ) $0.698$ $\pm0.024$      (S = 1.4)
$\mathit S_{ {{\mathit \chi}_{{c1}}} {{\mathit K}_S^0} }$ ( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}{{\mathit K}_S^0}$ ) $0.63$ $\pm0.10$
sin$(2\beta _{{\mathrm {eff}}})$( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}_S^0}$ ) $0.77$ ${}^{+0.13}_{-0.12}$
$\alpha $ $84.9$ ${}^{+5.1}_{-4.5}$ $^\circ{}$
$\mathit r_{{{\mathit B}^{0}}}$( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{*0}}$ ) $0.220$ ${}^{+0.041}_{-0.047}$
$\delta _{{{\mathit B}^{0}}}$( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}}{{\mathit K}^{*0}}$ ) $194$ ${}^{+30}_{-22}$ $^\circ{}$
Re($\epsilon _{{\mathit {\mathit b}}}$) $/$ (1 + $\vert \epsilon _{{\mathit {\mathit b}}}$ $\vert {}^{2}$) $-0.0013$ $\pm0.0004$
$\mathit A_{CP}$( ${{\mathit B}_{{s}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit K}^{-}}$ ) $0.221$ $\pm0.015$
 
[1] Re($\epsilon {{}^\prime}/\epsilon $) = $\epsilon {{}^\prime}/\epsilon $ to a very good approximation provided the phases satisfy $\mathit CPT$ invariance.
[2] This mode includes gammas from inner bremsstrahlung but not the direct emission mode ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$ (DE).