LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation of each of $\mathit L_{{{\mathit e}}}$, $\mathit L_{{{\mathit \mu}}}$, $\mathit L_{{{\mathit \tau}}}$.

$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.2\times 10^{-5}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<9.8\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit Z}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<7.5\times 10^{-7}$ CL=95.0%
${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \tau}^{\mp}}{)}$ $/$ ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$ $<8.9 \times 10^{-6}$ CL=95.0%
${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{\pm}}{{\mathit \tau}^{\mp}}{)}$ $/$ ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$ $<4.0 \times 10^{-6}$ CL=95.0%
   limit on ${{\mathit \mu}^{-}}$ $\rightarrow$ ${{\mathit e}^{-}}$ conversion
      ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{32}\mathrm {S}$ $\rightarrow$ ${{\mathit e}^{-}}{}^{32}\mathrm {S}{)}$ / ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{32}\mathrm {S}$ $\rightarrow$ ${{\mathit \nu}_{{\mu}}}{}^{32}\mathrm {P}^{*}{)}$ $<7 \times 10^{-11}$ CL=90.0%
      ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{}\mathrm {Ti}$ $\rightarrow$ ${{\mathit e}^{-}}{}^{}\mathrm {Ti}{)}$ / ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{}\mathrm {Ti}$ $\rightarrow$ capture${)}$ $<4.3 \times 10^{-12}$ CL=90.0%
      ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{}\mathrm {Pb}$ $\rightarrow$ ${{\mathit e}^{-}}{}^{}\mathrm {Pb}{)}$ / ${\mathit \sigma (}$ ${{\mathit \mu}^{-}}$ ${}^{}\mathrm {Pb}$ $\rightarrow$ capture${)}$ $<4.6 \times 10^{-11}$ CL=90.0%
$\mathit R_{\mathit g}$ = $\mathit G_{\mathit C}$ $/$ $\mathit G_{\mathit F}$ $<0.0030$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \mu}^{-}} \rightarrow {{\mathit e}^{-}}2 {{\mathit \gamma}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<7.2\times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \mu}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit e}^{+}} {{\mathit e}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.0\times 10^{-12}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \mu}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \gamma}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.2\times 10^{-13}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \mu}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \nu}_{{e}}} {{\overline{\mathit \nu}}_{{\mu}}} )}$ $/$ $\Gamma\mathrm {(total)}$ [2] $<1.2\%$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit f}_{{0}}{(980)}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit f}_{{0}}{(980)}} \rightarrow {{\mathit e}^{-}} {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \omega}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.7\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \omega}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \eta}^{\,'}{(958)}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \eta}^{\,'}{(958)}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit K}_S^0} {{\mathit K}_S^0} )}$ $/$ $\Gamma\mathrm {(total)}$ $<8.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit K}_S^0} {{\mathit K}_S^0} )}$ $/$ $\Gamma\mathrm {(total)}$ $<7.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \phi}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<8.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \phi}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit K}^{+}} {{\mathit K}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit K}^{+}} {{\mathit K}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \pi}^{0}} {{\mathit \eta}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \pi}^{0}} {{\mathit \eta}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.4\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \eta}} {{\mathit \eta}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \eta}} {{\mathit \eta}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \pi}^{0}} {{\mathit \pi}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \pi}^{0}} {{\mathit \pi}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6.5\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\overline{\mathit K}}^{*}{(892)}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<7.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\overline{\mathit K}}^{*}{(892)}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.4\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \eta}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6.5\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} light boson)}$ $/$ $\Gamma\mathrm {(total)}$ $<5\times 10^{-3}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} light boson)}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-3}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \pi}^{-}} {{\mathit K}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.5\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \pi}^{-}} {{\mathit K}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \eta}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<9.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{+}} {{\mathit e}^{-}} {{\mathit e}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.5\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{+}} {{\mathit \mu}^{-}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.7\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit K}^{*}{(892)}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<5.9\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit K}^{*}{(892)}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \pi}^{+}} {{\mathit K}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<8.6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \pi}^{+}} {{\mathit K}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.7\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.3\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \rho}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \rho}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit K}_S^0} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.6\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit K}_S^0} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.3\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \pi}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<8.0\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \pi}^{0}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.1\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit e}^{+}} {{\mathit e}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit e}^{+}} {{\mathit e}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \mu}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit e}^{-}} {{\mathit \gamma}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.3\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \tau}^{-}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \gamma}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.4\times 10^{-8}$ CL=90.0%
$\mathbf {\text{LEPTON FAMILY NUMBER VIOLATION IN NEUTRINOS}}$
      sin$^2(\theta _{12})$ $0.307$ $\pm0.013$
      $\Delta $m${}^{2}_{21}$ ($7.53$ $\pm0.18$) $ \times 10^{-5}$ eV${}^{2}$
      sin$^2(\theta _{23})$ (Inverted order) $0.536$ ${}^{+0.023}_{-0.028}$
      sin$^2(\theta _{23})$ (Normal order, octant I) $0.512$ ${}^{+0.019}_{-0.022}$
      sin$^2(\theta _{23})$ (Normal order, octant II) $0.542$ ${}^{+0.019}_{-0.022}$
      $\Delta $m${}^{2}_{32}$ (Inverted order) $0.002444$ $\pm0.000034$ eV${}^{2}$
      $\Delta $m${}^{2}_{32}$ (Normal order) $0.002444$ $\pm0.000034$ eV${}^{2}$
      sin$^2(\theta _{13})$ $0.0218$ $\pm0.0007$
$\Gamma\mathrm {( {{\mathit \pi}^{+}} \rightarrow {{\mathit \mu}^{-}} {{\mathit e}^{+}} {{\mathit e}^{+}} {{\mathit \nu}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \pi}^{+}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \nu}_{{e}}} )}$ $/$ $\Gamma\mathrm {(total)}$ [3] $<8.0\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \pi}^{0}} \rightarrow {{\mathit \mu}^{-}} {{\mathit e}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.4\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \pi}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit e}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.8\times 10^{-10}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \pi}^{0}} \rightarrow {{\mathit \mu}^{+}} {{\mathit e}^{-}} {+} {{\mathit \mu}^{-}} {{\mathit e}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.6\times 10^{-10}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \eta}} \rightarrow {{\mathit \mu}^{+}} {{\mathit e}^{-}} {+} {{\mathit \mu}^{-}} {{\mathit e}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \eta}^{\,'}{(958)}} \rightarrow {{\mathit e}} {{\mathit \mu}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.7\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \phi}{(1020)}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \mu}^{+}} {{\mathit \nu}_{{e}}} )}$ $/$ $\Gamma\mathrm {(total)}$ [3] $<4\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \mu}^{-}} {{\mathit \nu}} {{\mathit e}^{+}} {{\mathit e}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{+}} {{\mathit e}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{-}} {{\mathit e}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<5.2\times 10^{-10}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}_L^0} \rightarrow {{\mathit \pi}^{0}} {{\mathit \pi}^{0}} {{\mathit \mu}^{\pm}} {{\mathit e}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.7\times 10^{-10}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}_L^0} \rightarrow {{\mathit \pi}^{0}} {{\mathit \mu}^{\pm}} {{\mathit e}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<7.6\times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}_L^0} \rightarrow {{\mathit e}^{\pm}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<4.12\times 10^{-11}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit K}_L^0} \rightarrow {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<4.7\times 10^{-12}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.8\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.6\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.9\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit K}^{-}} {{\mathit K}^{+}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.8\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit K}^{-}} {{\mathit \pi}^{+}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<5.53\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\overline{\mathit K}}^{*}{(892)}^{0}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<8.3\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\overline{\mathit K}}^{0}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.0\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \phi}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<3.4\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \omega}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.2\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \rho}^{0}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<4.9\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \eta}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.0\times 10^{-4}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \pi}^{0}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<8.6\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}^{0}} \rightarrow {{\mathit \mu}^{\pm}} {{\mathit e}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.3\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{s}}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<9.7\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{s}}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{s}}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit D}_{{s}}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{-}} {{\mathit \tau}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.8\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{+}} {{\mathit \tau}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{-}} {{\mathit \tau}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{+}} {{\mathit \tau}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.3\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<7.2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{-}} {{\mathit \tau}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit \mu}^{+}} {{\mathit \tau}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6.2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<7.5\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}} {{\mathit \tau}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.0\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{+}} {{\mathit \tau}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<7.4\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.8\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.7\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{+}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<9.9\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{+}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<9.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{*}{(892)}^{+}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.3\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit K}^{+}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<9.1\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6.4\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{+}} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6.4\times 10^{-3}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \pi}^{0}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.4\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.2\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit K}^{*}{(892)}^{0}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.8\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit K}^{0}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.7\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<2.2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<2.8\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}^{0}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<1.0\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}} \rightarrow {{\mathit \rho}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}} \rightarrow {{\mathit \pi}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<9.2\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}} \rightarrow {{\mathit K}^{*}{(892)}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<5.1\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}} \rightarrow {{\mathit K}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.8\times 10^{-8}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}} \rightarrow {{\mathit s}} {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<2.2\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit B}_{{s}}^{0}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ [1] $<5.4\times 10^{-9}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit J / \psi}{(1S)}} \rightarrow {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<2.0\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit J / \psi}{(1S)}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<8.3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit J / \psi}{(1S)}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \mu}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.6\times 10^{-7}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Upsilon}{(1S)}} \rightarrow {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<6.0\times 10^{-6}$ CL=95.0%
$\Gamma\mathrm {( {{\mathit \Upsilon}{(2S)}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Upsilon}{(2S)}} \rightarrow {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.3\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Upsilon}{(3S)}} \rightarrow {{\mathit e}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<4.2\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Upsilon}{(3S)}} \rightarrow {{\mathit \mu}^{\pm}} {{\mathit \tau}^{\mp}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<3.1\times 10^{-6}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{c}}^{+}} \rightarrow {{\mathit p}} {{\mathit e}^{-}} {{\mathit \mu}^{+}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<1.9\times 10^{-5}$ CL=90.0%
$\Gamma\mathrm {( {{\mathit \Lambda}_{{c}}^{+}} \rightarrow {{\mathit p}} {{\mathit e}^{+}} {{\mathit \mu}^{-}} )}$ $/$ $\Gamma\mathrm {(total)}$ $<9.9\times 10^{-6}$ CL=90.0%
 
[1] The value is for the sum of the charge states or particle/antiparticle states indicated.
[2] A test of additive vs. multiplicative lepton family number conservation.
[3] Derived from an analysis of neutrino-oscillation experiments.