Light ${{\widetilde{\boldsymbol G}}}$ (Gravitino) mass limits from collider experiments INSPIRE search

The following are bounds on light (${}\ll1~$eV) gravitino indirectly inferred from its coupling to matter suppressed by the gravitino decay constant.

Unless otherwise stated, all limits assume that other supersymmetric particles besides the gravitino are too heavy to be produced. The gravitino is assumed to be undetected and to give rise to a missing energy ($\not E$) signature.

Some earlier papers are now obsolete and have been omitted. They were last listed in our PDG 2014 edition: K. Olive, $\mathit et~al.$ (Particle Data Group), Chinese Physics C38 070001 (2014) (http://pdg.lbl.gov).

VALUE (eV) CL% DOCUMENT ID TECN  COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
$>3.5 \times 10^{-4}$ 95 1
AAD
2015BH
ATLS jet + $\not E_T$, ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ( ${{\widetilde{\mathit q}}}$ $/$ ${{\widetilde{\mathit g}}}$) ${{\widetilde{\mathit G}}}$ , ${\mathit m}_{{{\widetilde{\mathit q}}}}$ = ${\mathit m}_{{{\widetilde{\mathit g}}}}$ = 500 GeV
$>3 \times 10^{-4}$ 95 1
AAD
2015BH
ATLS jet + $\not E_T$, ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ( ${{\widetilde{\mathit q}}}$ $/$ ${{\widetilde{\mathit g}}}$) ${{\widetilde{\mathit G}}}$ , ${\mathit m}_{{{\widetilde{\mathit q}}}}$ = ${\mathit m}_{{{\widetilde{\mathit g}}}}$ = 1000 GeV
$>2 \times 10^{-4}$ 95 1
AAD
2015BH
ATLS jet + $\not E_T$, ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ( ${{\widetilde{\mathit q}}}$ $/$ ${{\widetilde{\mathit g}}}$) ${{\widetilde{\mathit G}}}$ , ${\mathit m}_{{{\widetilde{\mathit q}}}}$ = ${\mathit m}_{{{\widetilde{\mathit g}}}}$ = 1500 GeV
$>1.09 \times 10^{-5}$ 95 2
ABDALLAH
2005B
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\widetilde{\mathit G}}}{{\widetilde{\mathit G}}}{{\mathit \gamma}}$
$>1.35 \times 10^{-5}$ 95 3
ACHARD
2004E
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\widetilde{\mathit G}}}{{\widetilde{\mathit G}}}{{\mathit \gamma}}$
$>1.3 \times 10^{-5}$ 4
HEISTER
2003C
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\widetilde{\mathit G}}}{{\widetilde{\mathit G}}}{{\mathit \gamma}}$
$>11.7 \times 10^{-6}$ 95 5
ACOSTA
2002H
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\widetilde{\mathit G}}}{{\widetilde{\mathit G}}}{{\mathit \gamma}}$
$>8.7 \times 10^{-6}$ 95 6
ABBIENDI,G
2000D
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\widetilde{\mathit G}}}{{\widetilde{\mathit G}}}{{\mathit \gamma}}$
1  AAD 2015BH searched in 20.3 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV for associated production of a light gravitino and a squark or gluino. The squark (gluino) is assumed to decay exclusively to a quark (gluon) and a gravitino. No evidence was found for an excess above the expected level of Standard Model background and 95$\%$ C.L. lower limits were set on the gravitino mass as a function of the squark/gluino mass, both in the case of degenerate and non-degenerate squark/gluino masses, see Figs. 14 and 15.
2  ABDALLAH 2005B use data from $\sqrt {s }$ = $180 - 208$~GeV. They look for events with a single photon + $\not E$ final states from which a cross section limit of $\sigma $ $<$ 0.18~$\mathit pb$ at 208~GeV is obtained, allowing a limit on the mass to be set. Supersedes the results of ABREU 2000Z.
3  ACHARD 2004E use data from $\sqrt {s }$ = $189 - 209$~GeV. They look for events with a single photon + $\not E$ final states from which a limit on the Gravitino mass is set corresponding to $\sqrt {F }$ $>$ 238~GeV. Supersedes the results of ACCIARRI 1999R.
4  HEISTER 2003C use the data from $\sqrt {s }$ = $189 - 209$ GeV to search for ${{\mathit \gamma}}\not E_T$ final states.
5  ACOSTA 2002H looked in 87 $\mathit pb{}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$=1.8 TeV for events with a high-$\mathit E_{T}$ photon and $\not E_T$. They compared the data with a GMSB model where the final state could arise from ${{\mathit q}}$ ${{\overline{\mathit q}}}$ $\rightarrow$ ${{\widetilde{\mathit G}}}{{\widetilde{\mathit G}}}{{\mathit \gamma}}$ . Since the cross section for this process scales as 1/$\vert \mathit F$ $\vert {}^{4}$, a limit at 95$\%$ CL is derived on $\vert \mathit F$ $\vert {}^{1/2}$ $>$ 221 GeV. A model independent limit for the above topology is also given in the paper.
6  ABBIENDI,G 2000D searches for ${{\mathit \gamma}}\not E$ final states from $\sqrt {\mathit s }$=189 GeV.
  References:
AAD 2015BH
EPJ C75 299 Search for New Phenomena in Final States with an Energetic Jet and Large Missing Transverse Momentum in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
ABDALLAH 2005B
EPJ C38 395 Photon Events with Missing Energy in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = 130 to 209 GeV
ACHARD 2004E
PL B587 16 Single Photon and Multiphoton Events with Missing Energy in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at LEP
HEISTER 2003C
EPJ C28 1 Single Photon and Multiphoton Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ up to 209 GeV
ACOSTA 2002H
PRL 89 281801 Limits on Extra Dimensions and New Particle Production in the Exclusive Photon and Missing Energy Signature in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABBIENDI,G 2000D
EPJ C18 253 Photonic Events with Missing Energy in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = 189 GeV
ABREU 2000Z
EPJ C17 53 Photon Events with Missing Energy at $\sqrt {s }$ = 183 to 189-GeV
ACCIARRI 1999R
PL B470 268 Single and Multiphoton Events with Missing Energy in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = 189 GeV
PDG 2014
CP C38 070001 Review of Particle Physics 2014