MASS LIMITS for ${{\mathit g}_{{A}}}$ (axigluon) and Other Color-Octet Gauge Bosons

INSPIRE   PDGID:
S056AXG
Axigluons are massive color-octet gauge bosons in chiral color models and have axial-vector coupling to quarks with the same coupling strength as gluons.
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{ > 6600}$ OUR LIMIT
$\bf{\text{none 1800 - 6600}}$ 95 1
SIRUNYAN
2020AI
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 600 - 6100}$ 95 2
SIRUNYAN
2018BO
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 600 - 5500}$ 95 3
KHACHATRYAN
2017W
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 1500 - 5100}$ 95 4
KHACHATRYAN
2016K
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 500 - 1600}$ 95 5
KHACHATRYAN
2016L
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 1300 - 3600}$ 95 6
KHACHATRYAN
2015V
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
• • We do not use the following data for averages, fits, limits, etc. • •
7
KHACHATRYAN
2017Y
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit g}_{{A}}}$ $\rightarrow$ 8 ${{\mathit j}}$
8
AAD
2016W
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
$> 2800$ 95 9
KHACHATRYAN
2016E
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{KK}}}{{\mathit X}}$ , ${{\mathit g}_{{KK}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
10
KHACHATRYAN
2015AV
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \Theta}^{0}}{{\mathit \Theta}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}}{{\mathit g}}$
11
AALTONEN
2013R
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ ${{\mathit \sigma}}{{\mathit \sigma}}$ , ${{\mathit \sigma}}$ ${{\mathit j}}$
$> 3360$ 95 12
CHATRCHYAN
2013A
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit g}_{{A}}}$ X, ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 1000 - 3270}$ 95 13
CHATRCHYAN
2013AS
CMS Superseded by KHACHATRYAN 2015V
$\text{none 250 - 740}$ 95 14
CHATRCHYAN
2013AU
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ 2 ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$> 775$ 95 15
ABAZOV
2012R
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 2470$ 95 16
CHATRCHYAN
2011Y
CMS Superseded by CHATRCHYAN 2013A
17
AALTONEN
2010L
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}{{\mathit X}}$ , ${{\mathit g}_{{A}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{none 1470 - 1520}$ 95 18
KHACHATRYAN
2010
CMS Superseded by CHATRCHYAN 2013A
$\text{none 260 - 1250}$ 95 19
AALTONEN
2009AC
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}$ X, ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$> 910$ 95 20
CHOUDHURY
2007
RVUE ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit X}}$
$>365$ 95 21
DONCHESKI
1998
RVUE $\Gamma\mathrm {( {{\mathit Z}} \rightarrow hadron)}$
$\text{none 200 - 980}$ 95 22
ABE
1997G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}$ X, ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$\text{none 200 - 870}$ 95 23
ABE
1995N
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}$ X, ${{\mathit g}_{{A}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 240 - 640}$ 95 24
ABE
1993G
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}$ X, ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$>50$ 95 25
CUYPERS
1991
RVUE ${\mathit \sigma (}$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons${)}$
$\text{none 120-210}$ 95 26
ABE
1990H
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}$ X, ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$>29$ 27
ROBINETT
1989
THEO Partial-wave unitarity
$\text{none 150-310}$ 95 28
ALBAJAR
1988B
UA1 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit g}_{{A}}}$ X, ${{\mathit g}_{{A}}}$ $\rightarrow$ 2 ${{\mathit j}}$
$>20$
BERGSTROM
1988
RVUE ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \Upsilon}}$ X via ${{\mathit g}_{{A}}}{{\mathit g}}$
$>9$ 29
CUYPERS
1988
RVUE ${{\mathit \Upsilon}}$ decay
$>25$ 30
DONCHESKI
1988B
RVUE ${{\mathit \Upsilon}}$ decay
1  SIRUNYAN 2020AI search for resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
2  SIRUNYAN 2018BO search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
3  KHACHATRYAN 2017W search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
4  KHACHATRYAN 2016K search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
5  KHACHATRYAN 2016L search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.
6  KHACHATRYAN 2015V search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
7  KHACHATRYAN 2017Y search for pair production of color-octet gauge boson ${{\mathit g}_{{A}}}$ each decaying to 4${{\mathit j}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
8  AAD 2016W search for a new resonance decaying to a pair of ${{\mathit b}}$ and ${{\mathit B}_{{H}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The vector-like quark ${{\mathit B}_{{H}}}$ is assumed to decay to . See their Fig. 3 and Fig. 4 for limits on $\sigma \cdot{}\mathit B$.
9  KHACHATRYAN 2016E search for KK gluon decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
10  KHACHATRYAN 2015AV search for pair productions of neutral color-octet weak-triplet scalar particles (${{\mathit \Theta}^{0}}$), decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit Z}}{{\mathit g}}$ or ${{\mathit \gamma}}{{\mathit g}}$ , in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The ${{\mathit \Theta}^{0}}$ particle is often predicted in coloron (${{\mathit G}^{\,'}}$, color-octet gauge boson) models and appear in the ${{\mathit p}}{{\mathit p}}$ collisions through ${{\mathit G}^{\,'}}$ $\rightarrow$ ${{\mathit \Theta}^{0}}{{\mathit \Theta}^{0}}$ decays. Assuming B( ${{\mathit \Theta}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = 0.5, they give limits ${\mathit m}_{{{\mathit \Theta}^{0}}}$ $>$ 623 GeV (426 GeV) for ${\mathit m}_{{{\mathit G}^{\,'}}}$ = 2.3 ${\mathit m}_{{{\mathit \Theta}^{0}}}$ (${\mathit m}_{{{\mathit G}^{\,'}}}$ = 5 ${\mathit m}_{{{\mathit \Theta}^{0}}}$).
11  AALTONEN 2013R search for new resonance decaying to ${{\mathit \sigma}}{{\mathit \sigma}}$ , with hypothetical strongly interacting ${{\mathit \sigma}}$ particle subsequently decaying to 2 jets, in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV, using data corresponding to an integrated luminosity of 6.6 fb${}^{-1}$. For 50 GeV $<$ ${\mathit m}_{{{\mathit \sigma}}}$ $<$ ${\mathit m}_{{{\mathit g}_{{A}}}}$/2, axigluons in mass range $150 - 400$ GeV are excluded.
12  CHATRCHYAN 2013A search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV.
13  CHATRCHYAN 2013AS search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
14  CHATRCHYAN 2013AU search for the pair produced color-octet vector bosons decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ pairs in ${{\mathit p}}{{\mathit p}}$ collisions. The quoted limit is for B( ${{\mathit g}_{{A}}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ ) = 1.
15  ABAZOV 2012R search for massive color octet vector particle decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ . The quoted limit assumes ${{\mathit g}_{{A}}}$ couplings with light quarks are suppressed by 0.2.
16  CHATRCHYAN 2011Y search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }~=~7~$TeV.
17  AALTONEN 2010L search for massive color octet non-chiral vector particle decaying into ${{\mathit t}}{{\overline{\mathit t}}}$ pair with mass in the range 400 GeV $<$ M $<$ 800 GeV. See their Fig.$~$6 for limit in the mass-coupling plane.
18  KHACHATRYAN 2010 search for new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }~=~7~$TeV.
19  AALTONEN 2009AC search for new narrow resonance decaying to dijets.
20  CHOUDHURY 2007 limit is from the ${{\mathit t}}{{\overline{\mathit t}}}$ production cross section measured at CDF.
21  DONCHESKI 1998 compare $\alpha _{\mathit s}$ derived from low-energy data and that from $\Gamma\mathrm {( {{\mathit Z}} \rightarrow hadrons)}/\Gamma\mathrm {( {{\mathit Z}} \rightarrow leptons)}$.
22  ABE 1997G search for new particle decaying to dijets.
23  ABE 1995N assume axigluons decaying to quarks in the Standard Model only.
24  ABE 1993G assume $\Gamma\mathrm {({{\mathit g}_{{A}}})}$ = $\mathit N{{\mathit \alpha}_{{s}}}{\mathit m}_{{{\mathit g}_{{A}}}}$/6 with $\mathit N$ = 10.
25  CUYPERS 1991 compare $\alpha _{\mathit s}$ measured in ${{\mathit \Upsilon}}$ decay and that from $\mathit R$ at PEP/PETRA energies.
26  ABE 1990H assumes $\Gamma\mathrm {({{\mathit g}_{{A}}})}$ = $\mathit N{{\mathit \alpha}_{{s}}}{\mathit m}_{{{\mathit g}_{{A}}}}$/6 with $\mathit N$ = 5$~(\Gamma\mathrm {({{\mathit g}_{{A}}})}$ = 0.09${\mathit m}_{{{\mathit g}_{{A}}}}$). For $\mathit N$ = 10, the excluded region is reduced to 120$-$150 GeV.
27  ROBINETT 1989 result demands partial-wave unitarity of $\mathit J = 0$ ${\mathit {\mathit t}}$ ${\mathit {\overline{\mathit t}}}$ $\rightarrow$ ${\mathit {\mathit t}}$ ${\mathit {\overline{\mathit t}}}$ scattering amplitude and derives a limit ${\mathit m}_{{{\mathit g}_{{A}}}}$ $>$ $0.5$ ${\mathit m}_{{{\mathit t}}}$. Assumes ${\mathit m}_{{{\mathit t}}}$ $>$ 56 GeV.
28  ALBAJAR 1988B result is from the nonobservation of a peak in two-jet invariant mass distribution. $\Gamma\mathrm {({{\mathit g}_{{A}}})}$ $<$ $0.4$ ${\mathit m}_{{{\mathit g}_{{A}}}}$ assumed. See also BAGGER 1988 .
29  CUYPERS 1988 requires $\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit g}_{{A}}} )}<\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit g}} {{\mathit g}} )}$. A similar result is obtained by DONCHESKI 1988 .
30  DONCHESKI 1988B requires $\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit q}} {{\overline{\mathit q}}} )}/\Gamma\mathrm {( {{\mathit \Upsilon}} \rightarrow {{\mathit g}} {{\mathit g}} {{\mathit g}} )}$ $<$ $0.25$, where the former decay proceeds via axigluon exchange. A more conservative estimate of $<$ $0.5$ leads to ${\mathit m}_{{{\mathit g}_{{A}}}}$ $>$ 21 GeV.
References:
SIRUNYAN 2020AI
JHEP 2005 033 Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2018BO
JHEP 1808 130 Search for narrow and broad dijet resonances in proton-proton collisions at $ \sqrt{s}=13 $ TeV and constraints on dark matter mediators and other new particles
KHACHATRYAN 2017Y
PL B770 257 Search for New Phenomena in Events with High Jet Multiplicity and Low Missing Transverse Momentum in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2017W
PL B769 520 Search for Dijet Resonances in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV and Constraints on Dark Matter and other Models
AAD 2016W
PL B758 249 Search for Single Production of a Vector-Like Quark via a Heavy Gluon in the 4${\mathit {\mathit b}}$ Final State with the ATLAS Detector in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2016L
PRL 117 031802 Search for Narrow Resonances in Dijet Final States at $\sqrt {s }$ = 8 TeV with the Novel CMS Technique of Data Scouting
KHACHATRYAN 2016K
PRL 116 071801 Search for Narrow Resonances Decaying to Dijets in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
KHACHATRYAN 2016E
PR D93 012001 Search for Resonant ${\mathit {\mathit t}}{\mathit {\overline{\mathit t}}}$ Production in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2015V
PR D91 052009 Search for Resonances and Quantum Black Holes using Dijet Mass Spectra in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2015AV
JHEP 1509 201 Search for Neutral Color-Octet Weak-Triplet Scalar Particles in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
AALTONEN 2013R
PRL 111 031802 Search for Pair-Production of Strongly-Interacting Particles Decaying to Pairs of Jets in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
CHATRCHYAN 2013AU
PRL 110 141802 Search for Pair-Produced Dijet Resonances in Four-Jet Final States in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
CHATRCHYAN 2013AS
PR D87 114015 Search for Narrow Resonances using the Dijet Mass Spectrum in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV
CHATRCHYAN 2013A
JHEP 1301 013 Search for Narrow Resonances and Quantum Black Holes in Inclusive and ${\mathit {\mathit b}}$-Tagged Dijet Mass Spectra from ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
ABAZOV 2012R
PR D85 051101 Search for a Narrow ${\mathit {\mathit t}}{\mathit {\overline{\mathit t}}}$ Resonance in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
CHATRCHYAN 2011Y
PL B704 123 Search for Resonances in the Dijet Mass Spectrum from 7 TeV ${{\mathit p}}{{\mathit p}}$ Collisions at CMS
AALTONEN 2010L
PL B691 183 Search for New Color-Octet Vector Particle Decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
KHACHATRYAN 2010
PRL 105 211801 Search for Dijet Resonances in 7 TeV ${{\mathit p}}{{\mathit p}}$ Collisions at CMS
Also
PRL 106 029902 Publisher's Note to KHACHATRYAN 2010 : Search for Dijet Resonances in 7 TeV ${{\mathit p}}{{\mathit p}}$ Collisions at CMS
AALTONEN 2009AC
PR D79 112002 Search for New Particles Decaying into Dijets in Proton-Antiproton Collisions at $\sqrt {s }$ = 1.96$~$TeV
CHOUDHURY 2007
PL B657 69 Top Production at the Tevatron/LHC and Nonstandard, Strongly Interacting Spin One Particles
DONCHESKI 1998
PR D58 097702 Eliminating the Low-Mass Axigluon Window
ABE 1997G
PR D55 5263 Search for New Particles Decaying to Dijets at CDF
ABE 1995N
PRL 74 3538 Search for New Particles Decaying to Dijets in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABE 1993G
PRL 71 2542 Search for Quark Compositeness, Axigluons and Heavy Particles Using the Dijet Invariant Mass Spectrum Observed in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions
CUYPERS 1991
PL B259 173 Axigluon Mass Bound from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Annihilation
ABE 1990H
PR D41 1722 The Two Jet Invariant Mass Distribution at $\sqrt {s }$ = 1.8 TeV
ROBINETT 1989
PR D39 834 Partial Wave Unitarity Constraints on the Axigluon Mass
ALBAJAR 1988B
PL B209 127 Two Jet Mass Distributions at the CERN Proton-Antiproton Collider
BERGSTROM 1988
PL B212 386 Upsilon Production at Large Transverse Momentum as a Probe of Axigluons
CUYPERS 1988
PRL 60 1237 Lower Limit on the Axigluon Mass from ${{\mathit \Upsilon}}$ Decay
DONCHESKI 1988B
PR D38 412 Axigluons in the ${{\mathit \Upsilon}}$ System