${{\mathit H}}$ SPIN AND $\mathit CP$ PROPERTIES

INSPIRE   PDGID:
S126CP


The observation of the signal in the ${{\mathit \gamma}}{{\mathit \gamma}}$ final state rules out the possibility that the discovered particle has spin 1, as a consequence of the Landau-Yang theorem. This argument relies on the assumptions that the decaying particle is an on-shell resonance and that the decay products are indeed two photons rather than two pairs of boosted photons, which each could in principle be misidentified as a single photon.

Concerning distinguishing the spin 0 hypothesis from a spin 2 hypothesis, some care has to be taken in modelling the latter in order to ensure that the discriminating power is actually based on the spin properties rather than on unphysical behavior that may affect the model of the spin 2 state.

Under the assumption that the observed signal consists of a single state rather than an overlap of more than one resonance, it is sufficient to discriminate between distinct hypotheses in the spin analyses. On the other hand, the determination of the $\mathit CP$ properties is in general much more difficult since in principle the observed state could consist of any admixture of $\mathit CP$-even and $\mathit CP$-odd components. As a first step, the compatibility of the data with distinct hypotheses of pure $\mathit CP$-even and pure $\mathit CP$-odd states with different spin assignments has been investigated. In order to treat the case of a possible mixing of different $\mathit CP$ states, certain cross section ratios are considered. Those cross section ratios need to be distinguished from the amount of mixing between a $\mathit CP$-even and a $\mathit CP$-odd state, as the cross section ratios depend in addition also on the coupling strengths of the $\mathit CP$-even and $\mathit CP$-odd components to the involved particles. A small relative coupling implies a small sensitivity of the corresponding cross section ratio to effects of $\mathit CP$ mixing.

VALUE DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
1
AAD
2022V
ATLS ${{\mathit W}}{{\mathit W}^{*}}$ ( $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$ )+ 2 ${{\mathit j}}$ , 13 TeV
2
TUMASYAN
2022Y
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$ , 13 TeV
3
AAD
2020N
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$ , VBF, 13 TeV
4
AAD
2020Z
ATLS ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , 13 TeV
5
SIRUNYAN
2020AS
CMS ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , 13 TeV
6
SIRUNYAN
2019BL
CMS ${{\mathit p}}{{\mathit p}}$ , 7, 8, 13 TeV, ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $/$ ${{\mathit Z}}$ ${{\mathit Z}}$ $\rightarrow$ 4 ${{\mathit \ell}}$
7
SIRUNYAN
2019BZ
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}$ +2jets (VBF, ggF, ${{\mathit V}}{{\mathit H}}$ ), ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$ , 13 TeV
8
AABOUD
2018AJ
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$ ), 13TeV
9
SIRUNYAN
2017AM
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}$ +${}\geq{}$ 2 ${{\mathit j}}$ , ${{\mathit H}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ (${{\mathit \ell}}$ = ${{\mathit e}}$ , ${{\mathit \mu}}$ )
10
AAD
2016
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
11
AAD
2016BL
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit j}}{{\mathit j}}{{\mathit X}}$ (VBF), ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$ , 8 TeV
12
KHACHATRYAN
2016AB
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$ , ${{\mathit Z}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 8 TeV
13
AAD
2015AX
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$
14
AAD
2015CI
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ , ${{\mathit W}}{{\mathit W}^{*}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
15
AALTONEN
2015
TEVA ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$ , ${{\mathit Z}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
16
AALTONEN
2015B
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$ , ${{\mathit Z}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
17
KHACHATRYAN
2015Y
CMS ${{\mathit H}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ , ${{\mathit W}}{{\mathit W}^{*}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
18
ABAZOV
2014F
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$ , ${{\mathit Z}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
19
CHATRCHYAN
2014AA
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$
20
CHATRCHYAN
2014G
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$
21
KHACHATRYAN
2014P
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
22
AAD
2013AJ
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit Z}}$ ${{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ , ${{\mathit W}}$ ${{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$
23
CHATRCHYAN
2013J
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$
1  AAD 2022V measure the $\mathit CP$ properties of the effective Higgs-gluon interaction using gluon fusion ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$ plus two jets with 36.1 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The measured tangent of the $\mathit CP$-mixing angle tan $\alpha $ is $0.0$ $\pm0.4$ $\pm0.3$ assuming the standard model ${{\mathit H}}{{\mathit V}}{{\mathit V}}$ couplings. See their Fig. 6.
2  TUMASYAN 2022Y measure the $\mathit CP$ structure of the ${{\mathit \tau}}$ Yukawa coupling using 137 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The $\mathit CP$-mixing angle $\alpha $ for ${{\mathit \tau}}$ Yukawa coupling is measured to be $-1$ $\pm19^\circ{}$. The data disfavour the pure $\mathit CP$-odd ($\alpha $ = 90$^\circ{}$) at 3.0 $\sigma $.
3  AAD 2020N test $\mathit CP$ invariance in ${{\mathit H}}$ production via VBF using ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$ decay channel with 36.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. By using the Optimal Observable method, the data constrain a parameter ${{\widetilde{\mathit d}}}$, which is for the strength of $\mathit CP$ violation in an effective field theory, to be $-0.090$ ${}\leq{}{{\widetilde{\mathit d}}}{}\leq{}$ 0.035 at 68$\%$ CL (see their Fig. 6).
4  AAD 2020Z exclude a $\mathit CP$-mixing angle $\alpha $, $\vert \alpha \vert $ $>$ 43$^\circ{}$ at 95$\%$ CL, where $\alpha $ = 0 represents the Standard Model, in 139 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The pure $\mathit CP$-odd structure of the top Yukawa coupling ($\alpha $ = 90$^\circ{}$) is excluded at 3.9 $\sigma $.
5  SIRUNYAN 2020AS exclude the pure $\mathit CP$-odd structure of the top Yukawa coupling at 3.2 $\sigma $ using ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ in 137 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The fractional contribution of the $\mathit CP$-odd component ${{\mathit f}}{}^{ {{\mathit t}} {{\overline{\mathit t}}} {{\mathit H}} }_{CP}$ is measured to be $0.00$ $\pm0.33$.
6  SIRUNYAN 2019BL measure the anomalous ${{\mathit H}}{{\mathit V}}{{\mathit V}}$ couplings from on-shell and off-shell production in the 4 ${{\mathit \ell}}$ final state. Data of 80.2 fb${}^{-1}$ at 13 TeV, 19.7 fb${}^{-1}$ at 8 TeV, and 5.1 fb${}^{-1}$ at 7 TeV are used. See their Tables VI and VII for anomalous ${{\mathit H}}{{\mathit V}}{{\mathit V}}$ couplings of $\mathit CP$-violating and $\mathit CP$-conserving parameters with on- and off-shells.
7  SIRUNYAN 2019BZ constrain anomalous ${{\mathit H}}{{\mathit V}}{{\mathit V}}$ couplings of the Higgs boson with data of 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV using Higgs boson candidates with two jets produced in VBF, ggF, and ${{\mathit V}}{{\mathit H}}$ that decay to ${{\mathit \tau}}{{\mathit \tau}}$ . See their Table 2 and Fig. 10, which show 68$\%$ CL and 95$\%$ CL intervals. Combining those with the ${{\mathit H}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ (SIRUNYAN 2019BL, on-shell scenario), results shown in their Tables 3, 4, and Fig. 11 are obtained. A $\mathit CP$-violating parameter is set to be ${{\mathit f}_{{a3}}}$cos $({{\mathit \phi}_{{a3}}})$ = ($0.00$ $\pm0.27$) $ \times 10^{-3}$ and $\mathit CP$-conserving parameters are ${{\mathit f}_{{a2}}}$cos $({{\mathit \phi}_{{a2}}})$ = ($0.08$ ${}^{+1.04}_{-0.21}$) $ \times 10^{-3}$, ${{\mathit f}}_{\Lambda 1}$cos $({{\mathit \phi}}_{\Lambda 1})$ = ($0.00$ ${}^{+0.53}_{-0.09}$) $ \times 10^{-3}$, and ${{\mathit f}}{}^{ {{\mathit Z}} {{\mathit \gamma}} }_{ \Lambda 1}$cos $({{\mathit \phi}}{}^{ {{\mathit Z}} {{\mathit \gamma}} }_{\Lambda 1})$ = ($0.0$ ${}^{+1.1}_{-1.3}$) $ \times 10^{-3}$.
8  AABOUD 2018AJ study the tensor structure of the Higgs boson couplings using an effective Lagrangian using 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Constraints are set on the non-Standard-Model $\mathit CP$-even and $\mathit CP$-odd couplings to ${{\mathit Z}}$ bosons and on the $\mathit CP$-odd coupling to gluons. See their Figs. 9 and 10, and Tables 10 and 11.
9  SIRUNYAN 2017AM constrain anomalous couplings of the Higgs boson with 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV, 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV, and 38.6 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Table 3 and Fig. 3, which show 68$\%$ CL and 95$\%$ CL intervals. A $\mathit CP$ violation parameter ${{\mathit f}_{{a3}}}$ is set to be ${{\mathit f}_{{a3}}}$cos $(\phi _{a3})$ = [$-0.38$, $0.46$] at 95$\%$ CL ($\phi _{a3}$ = 0 or ${{\mathit \pi}}$).
10  AAD 2016 study ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ with an effective Lagrangian including $\mathit CP$ even and odd terms in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The data is consistent with the expectations for the Higgs boson of the Standard Model. Limits on anomalous couplings are also given.
11  AAD 2016BL study VBF ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$ with an effective Lagrangian including a $\mathit CP$ odd term in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The measurement is consistent with the expectation of the Standard Model. The $\mathit CP$-mixing parameter $\tilde{{\mathit d}}$ (a dimensionless coupling ${{\widetilde{\mathit d}}}=−({{\mathit m}^{2}_{W}}/\Lambda {}^{2}){{\mathit f}}_{ {{\widetilde{\mathit W}}} {{\mathit W}} }$) is constrained to the interval of ($-0.11$, $0.05$) at 68$\%$ CL under the assumption of ${{\widetilde{\mathit d}}}$ = ${{\widetilde{\mathit d}}_{{B}}}$.
12  KHACHATRYAN 2016AB search for anomalous pseudoscalar couplings of the Higgs boson to ${{\mathit W}}$ and ${{\mathit Z}}$ with 18.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Table 5 and Figs 5 and 6 for limits on possible anomalous pseudoscalar coupling parameters.
13  AAD 2015AX compare the $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{+}$ Standard Model assignment with other $\mathit J{}^{\mathit CP}$ hypotheses in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV, using the process ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$ . ${}^{}2{}^{+}$ hypotheses are excluded at $84.5 - 99.4\%$CL, ${}^{}0{}^{-}$ at 96.5$\%$CL, ${}^{}0{}^{+}$ (field strength coupling) at 70.8$\%$CL. See their Fig. 19 for limits on possible $\mathit CP$ mixture parameters.
14  AAD 2015CI compare the $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{+}$ Standard Model assignment with other $\mathit J{}^{\mathit CP}$ hypotheses in 4.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV, using the processes ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ . ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ and combine with AAD 2015AX data. ${}^{}0{}^{+}$ (field strength coupling), ${}^{}0{}^{-}$ and several ${}^{}2{}^{+}$ hypotheses are excluded at more than 99.9$\%$ CL. See their Tables $7 - 9$ for limits on possible $\mathit CP$ mixture parameters.
15  AALTONEN 2015 combine AALTONEN 2015B and ABAZOV 2014F data. An upper limit of 0.36 of the Standard Model production rate at 95$\%$ CL is obtained both for a ${}^{}0{}^{-}$ and a ${}^{}2{}^{+}$ state. Assuming the SM event rate, the $\mathit J{}^{\mathit CP}$ = ${}^{}0{}^{-}$ (${}^{}2{}^{+}$) hypothesis is excluded at the 5.0$\sigma $ (4.9$\sigma $) level.
16  AALTONEN 2015B compare the $\mathit J{}^{\mathit CP}$ = ${}^{}0{}^{+}$ Standard Model assignment with other $\mathit J{}^{\mathit CP}$ hypotheses in 9.45 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV, using the processes ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit W}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit b}}{{\overline{\mathit b}}}$ , and ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\overline{\mathit b}}}$ . Bounds on the production rates of ${}^{}0{}^{-}$ and ${}^{}2{}^{+}$ (graviton-like) states are set, see their tables II and III.
17  KHACHATRYAN 2015Y compare the $\mathit J{}^{\mathit CP}$ = ${}^{}0{}^{+}$ Standard Model assignment with other $\mathit J{}^{\mathit CP}$ hypotheses in up to 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV, using the processes ${{\mathit H}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ , and ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ . ${}^{}0{}^{-}$ is excluded at 99.98$\%$ CL, and several ${}^{}2{}^{+}$ hypotheses are excluded at more than 99$\%$ CL. Spin 1 models are excluded at more than 99.999$\%$ CL in ${{\mathit Z}}{{\mathit Z}^{*}}$ and ${{\mathit W}}{{\mathit W}^{*}}$ modes. Limits on anomalous couplings and several cross section fractions, treating the case of $\mathit CP$-mixed states, are also given.
18  ABAZOV 2014F compare the $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{+}$ Standard Model assignment with $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{-}$ and ${}^{}2{}^{+}$ (graviton-like coupling) hypotheses in up to 9.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. They use kinematic correlations between the decay products of the vector boson and the Higgs boson in the final states ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit W}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit b}}{{\overline{\mathit b}}}$ , and ${{\mathit Z}}$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\overline{\mathit b}}}$ . The ${}^{}0{}^{-}$ (${}^{}2{}^{+}$) hypothesis is excluded at 97.6$\%$ CL (99.0$\%$ CL). In order to treat the case of a possible mixture of a $0{}^{+}{}^{}$ state with another $\mathit J{}^{\mathit CP}$ state, the cross section fractions ${{\mathit f}_{{X}}}$ = ${{\mathit \sigma}_{{X}}}/({{\mathit \sigma}}_{0{}^{+}{}^{}}$ + ${{\mathit \sigma}_{{X}}}$) are considered, where ${{\mathit X}}$ = $0{}^{-}{}^{}$, $2{}^{+}{}^{}$. Values for ${{\mathit f}}_{0{}^{-}{}^{}}$ (${{\mathit f}}_{2{}^{+}{}^{}}$) above 0.80 (0.67) are excluded at 95$\%$ CL under the assumption that the total cross section is that of the SM Higgs boson.
19  CHATRCHYAN 2014AA compare the $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{+}$ Standard Model assignment with various $\mathit J{}^{\mathit CP}$ hypotheses in 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{-}$ and 1${}^{\pm{}}$ hypotheses are excluded at 99$\%$ CL, and several $\mathit J = 2$ hypotheses are excluded at 95$\%$ CL. In order to treat the case of a possible mixture of a ${}^{}0{}^{+}$ state with another $\mathit J{}^{\mathit CP}$ state, the cross section fraction ${{\mathit f}_{{a3}}}$ = $\vert {{\mathit a}_{{3}}}\vert ^2$ ${{\mathit \sigma}_{{3}}}$ $/$ ($\vert {{\mathit a}_{{1}}}\vert ^2$ ${{\mathit \sigma}_{{1}}}$ + $\vert {{\mathit a}_{{2}}}\vert ^2$ ${{\mathit \sigma}_{{2}}}$ + $\vert {{\mathit a}_{{3}}}\vert ^2$ ${{\mathit \sigma}_{{3}}}$) is considered, where the case ${{\mathit a}_{{3}}}$ = 1, ${{\mathit a}_{{1}}}$ = ${{\mathit a}_{{2}}}$ = 0 corresponds to a pure $\mathit CP$-odd state. Assuming ${{\mathit a}_{{2}}}$ = 0, a value for ${{\mathit f}_{{a3}}}$ above 0.51 is excluded at 95$\%$ CL.
20  CHATRCHYAN 2014G compare the $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{+}$ Standard Model assignment with $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{-}$ and ${}^{}2{}^{+}$ (graviton-like coupling) hypotheses in 4.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.4 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Varying the fraction of the production of the ${}^{}2{}^{+}$ state via ${{\mathit g}}{{\mathit g}}$ and ${{\mathit q}}{{\overline{\mathit q}}}$ , ${}^{}2{}^{+}$ hypotheses are disfavored at CL between 83.7 and 99.8$\%$. The ${}^{}0{}^{-}$ hypothesis is disfavored against ${}^{}0{}^{+}$ at the 65.3$\%$ CL.
21  KHACHATRYAN 2014P compare the $\mathit J{}^{\mathit CP}$= ${}^{}0{}^{+}$ Standard Model assignment with a ${}^{}2{}^{+}$ (graviton-like coupling) hypothesis in 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Varying the fraction of the production of the ${}^{}2{}^{+}$ state via ${{\mathit g}}{{\mathit g}}$ and ${{\mathit q}}{{\overline{\mathit q}}}$ , ${}^{}2{}^{+}$ hypotheses are disfavored at CL between 71 and 94$\%$.
22  AAD 2013AJ compare the spin 0, $\mathit CP$-even hypothesis with specific alternative hypotheses of spin 0, $\mathit CP$-odd, spin 1, $\mathit CP$-even and $\mathit CP$-odd, and spin 2, $\mathit CP$-even models using the Higgs boson decays ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{*}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ and ${{\mathit H}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ and combinations thereof. The data are compatible with the spin 0, $\mathit CP$-even hypothesis, while all other tested hypotheses are excluded at confidence levels above 97.8$\%$.
23  CHATRCHYAN 2013J study angular distributions of the lepton pairs in the ${{\mathit Z}}{{\mathit Z}^{*}}$ channel where both ${{\mathit Z}}$ bosons decay to ${{\mathit e}}$ or ${{\mathit \mu}}$ pairs. Under the assumption that the observed particle has spin 0, the data are found to be consistent with the pure $\mathit CP$-even hypothesis, while the pure $\mathit CP$-odd hypothesis is disfavored.
References:
AAD 2022V
EPJ C82 622 Constraints on Higgs boson properties using $WW^{*}(\rightarrow e\nu \mu \nu )jj$ production in $36.1\,\mathrm{fb}^{-1}$ of $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector
TUMASYAN 2022Y
JHEP 2206 012 Analysis of the $CP$ structure of the Yukawa coupling between the Higgs boson and $\tau$ leptons in proton-proton collisions at $ \sqrt{s} $ = 13 TeV
AAD 2020Z
PRL 125 061802 $CP$ Properties of Higgs Boson Interactions with Top Quarks in the $t\bar{t}H$ and $tH$ Processes Using $H \rightarrow \gamma\gamma$ with the ATLAS Detector
AAD 2020N
PL B805 135426 Test of CP invariance in vector-boson fusion production of the Higgs boson in the $H\rightarrow\tau\tau$ channel in proton$-$proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector
SIRUNYAN 2020AS
PRL 125 061801 Measurements of $\mathrm{t\bar{t}}$H production and the CP structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel
SIRUNYAN 2019BZ
PR D100 112002 Constraints on anomalous $HVV$ couplings from the production of Higgs bosons decaying to $\tau$ lepton pairs
SIRUNYAN 2019BL
PR D99 112003 Measurements of the Higgs boson width and anomalous $HVV$ couplings from on-shell and off-shell production in the four-lepton final state
AABOUD 2018AJ
JHEP 1803 095 Measurement of the Higgs boson coupling properties in the $H\rightarrow ZZ^{*} \rightarrow 4\ell$ decay channel at $\sqrt{s}$ = 13 TeV with the ATLAS detector
SIRUNYAN 2017AM
PL B775 1 Constraints on Anomalous Higgs boson Couplings using Production and Decay Information in the Four-Lepton Final State
AAD 2016
PL B753 69 Constraints on non-Standard Model Higgs Boson Interactions in an Effective Lagrangian using Differential Cross Sections Measured in the ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ Decay Channel at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2016BL
EPJ C76 658 Test of $\mathit CP$ Invariance in Vector-Boson Fusion Production of the Higgs Boson using the Optimal Observable Method in the Ditau Decay Channel with the ATLAS Detector
KHACHATRYAN 2016AB
PL B759 672 Combined Search for Anomalous Pseudoscalar HVV Couplings in VH( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) Production and ${{\mathit H}}$ $\rightarrow$ ${{\mathit V}}{{\mathit V}}$ decay
AAD 2015AX
EPJ C75 231 Determination of Spin and Parity of the Higgs Boson in the ${{\mathit W}}$ ${{\mathit W}^{*}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \mu}}{{\mathit \nu}}$ Decay Channel with the ATLAS Detector
AAD 2015CI
EPJ C75 476 Study of the Spin and Parity of the Higgs Boson in Diboson Decays with the ATLAS Detector
Also
EPJ C76 152 (errat.) Erratum to AAD 2015CI: Study of the Spin and Parity of the Higgs Boson in Diboson Decays with the ATLAS Detector
AALTONEN 2015B
PRL 114 141802 Constraints on Models of the Higgs Boson with Exotic Spin and Parity using Decays to Bottom-Antibottom Quarks in the Full CDF Data Set
AALTONEN 2015
PRL 114 151802 evatron Constraints on Models of the Higgs Boson with Exotic Spin and Parity using Decays to Bottom-Antibottom Quark Pairs
KHACHATRYAN 2015Y
PR D92 012004 Constraints on the Spin-Parity and Anomalous HVV Couplings of the Higgs Boson in Proton Collisions at 7 and 8 TeV
ABAZOV 2014F
PRL 113 161802 Constraints on Spin and Parity of the Higgs Boson ${{\mathit V}}{{\mathit H}}\rightarrow{{\mathit V}}{\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Final States
CHATRCHYAN 2014AA
PR D89 092007 Measurement of the Properties of a Higgs Boson in the Four-Lepton Final State
CHATRCHYAN 2014G
JHEP 1401 096 Measurement of Higgs Boson Production and Properties in the ${{\mathit W}}{{\mathit W}}$ Decay Channel with Leptonic Final States
KHACHATRYAN 2014P
EPJ C74 3076 Observation of the Diphoton Decay of the Higgs Boson and Measurement of its Properties
AAD 2013AJ
PL B726 120 Evidence for the Spin-0 Nature of the Higgs Boson using ATLAS Data
CHATRCHYAN 2013J
PRL 110 081803 On the Mass and Spin-Parity of the Higgs Boson Candidate via its Decays to ${{\mathit Z}}$ Boson Pairs