MASS LIMITS for Excited ${{\mathit q}}$ (${{\mathit q}^{*}}$)

Limits for Excited ${{\mathit q}}$ (${{\mathit q}^{*}}$) from Single Production

INSPIRE   PDGID:
S054EQS
These limits are from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\overline{\mathit q}}}$ , ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit q}^{*}}$ X, or ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}$ X and depend on transition magnetic couplings between ${{\mathit q}}$ and ${{\mathit q}^{*}}$. Assumptions about ${{\mathit q}^{*}}$ decay mode are given in the footnotes and comments.
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{ > 6700}$ OUR LIMIT
$\bf{\text{none 2000 - 6700}}$ 95 1
AAD
2020T
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1250 - 3200}$ 95 1
AAD
2020T
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit g}}$ , ${{\mathit b}}{{\mathit \gamma}}$ , ${{\mathit b}}{{\mathit Z}}$ , ${{\mathit t}}{{\mathit W}}$
$\text{none 1800 - 6300}$ 95 2
SIRUNYAN
2020AI
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1500 - 2600}$ 95 3
AABOUD
2018AB
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit g}}$
$\text{none 1500 - 5300}$ 95 4
AABOUD
2018BA
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$\text{none 1000 - 5500}$ 95 5
SIRUNYAN
2018AG
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$\text{none 1000 - 1800}$ 95 6
SIRUNYAN
2018AG
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit \gamma}}$
$\text{none 600 - 6000}$ 95 7
SIRUNYAN
2018BO
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}$ ${{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1200 - 5000}$ 95 8
SIRUNYAN
2018P
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit W}}$
$\text{none 1200 - 4700}$ 95 8
SIRUNYAN
2018P
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit Z}}$
$> 6000$ 95 9
AABOUD
2017AK
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$\text{none 700 - 3000}$ 95 10
TUMASYAN
2022O
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$> 2600$ 95 11
SIRUNYAN
2021AG
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$\text{none 600 - 5400}$ 95 12
KHACHATRYAN
2017W
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1100 - 2100}$ 95 13
AABOUD
2016
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit g}}$
$> 1500$ 95 14
AAD
2016AH
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$> 4400$ 95 15
AAD
2016AI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
16
AAD
2016AV
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit W}}{{\mathit b}}$
$> 5200$ 95 17
AAD
2016S
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 1390$ 95 18
KHACHATRYAN
2016I
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$> 5000$ 95 19
KHACHATRYAN
2016K
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 500 - 1600}$ 95 20
KHACHATRYAN
2016L
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 4060$ 95 21
AAD
2015V
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 3500$ 95 22
KHACHATRYAN
2015V
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 3500$ 95 23
AAD
2014A
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$> 3200$ 95 24
KHACHATRYAN
2014
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit W}}$
$> 2900$ 95 25
KHACHATRYAN
2014
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit Z}}$
$\text{none 700 - 3500}$ 95 26
KHACHATRYAN
2014J
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$> 2380$ 95 27
CHATRCHYAN
2013AJ
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit W}}$
$> 2150$ 95 28
CHATRCHYAN
2013AJ
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit Z}}$
1  AAD 2020T search for resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
2  SIRUNYAN 2020AI search for resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
3  AABOUD 2018AB assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit b}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit b}^{*}}$ production and decay amplitudes.
4  AABOUD 2018BA search for first-generation excited quarks (${{\mathit u}^{*}}$ and ${{\mathit d}^{*}}$) with degenerate mass, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
5  SIRUNYAN 2018AG search for first-generation excited quarks (${{\mathit u}^{*}}$ and ${{\mathit d}^{*}}$) with degenerate mass, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
6  SIRUNYAN 2018AG search for excited ${{\mathit b}}$ quark assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
7  SIRUNYAN 2018BO assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
8  SIRUNYAN 2018P use the hadronic decay of ${{\mathit W}}$ or ${{\mathit Z}}$, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$= ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$= 1.
9  AABOUD 2017AK assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes. Only the decay of ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit g}}{{\mathit u}}$ and ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit g}}{{\mathit d}}$ is simulated as the benchmark signals in the analysis.
10  TUMASYAN 2022O search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes ${{\mathit \kappa}_{{L}}^{b}}$ = ${{\mathit g}_{{L}}}$ = 1, ${{\mathit \kappa}_{{R}}^{b}}$ = ${{\mathit g}_{{R}}}$ = 0. The limit becomes ${\mathit m}_{{{\mathit b}^{*}}}$ $>$ 3.0 TeV ($>$3.2 TeV) if we assume ${{\mathit \kappa}_{{L}}^{b}}$ = ${{\mathit g}_{{L}}}$ = 0, ${{\mathit \kappa}_{{R}}^{b}}$ = ${{\mathit g}_{{R}}}$ = 1 (${{\mathit \kappa}_{{L}}^{b}}$ = ${{\mathit g}_{{L}}}$ = 1, ${{\mathit \kappa}_{{R}}^{b}}$ = ${{\mathit g}_{{R}}}$ = 1). See their Fig. 3 for limits on $\sigma \cdot{}B$.
11  SIRUNYAN 2021AG search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes ${{\mathit \kappa}_{{L}}^{b}}$ = ${{\mathit g}_{{L}}}$ = 1, ${{\mathit \kappa}_{{R}}^{b}}$ = ${{\mathit g}_{{R}}}$ = 0. The limit becomes ${\mathit m}_{{{\mathit b}^{*}}}$ $>$ 2.8 TeV ($>$ 3.1 TeV) if we assume ${{\mathit \kappa}_{{L}}^{b}}$ = ${{\mathit g}_{{L}}}$ = 0, ${{\mathit \kappa}_{{R}}^{b}}$ = ${{\mathit g}_{{R}}}$ = 1 (${{\mathit \kappa}_{{L}}^{b}}$ = ${{\mathit g}_{{L}}}$ = ${{\mathit \kappa}_{{R}}^{b}}$ = ${{\mathit g}_{{R}}}$ = 1). See their Fig. 5 for limits on $\sigma \cdot{}B$.
12  KHACHATRYAN 2017W assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
13  AABOUD 2016 assume $\Lambda $ = ${\mathit m}_{{{\mathit b}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in the ${{\mathit b}^{*}}$ production and decay amplitudes.
14  AAD 2016AH search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit f}_{{g}}}$ = ${{\mathit f}_{{L}}}$ = ${{\mathit f}_{{R}}}$ = 1 are assumed. See their Fig. 12b for limits on $\sigma \cdot{}\mathit B$.
15  AAD 2016AI assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
16  AAD 2016AV search for single production of vector-like quarks decaying to ${{\mathit W}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions. See their Fig. 8 for the limits on couplings and mixings.
17  AAD 2016S assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
18  KHACHATRYAN 2016I search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit \kappa}_{{L}}^{b}}$ = ${{\mathit g}_{{L}}}$ = 1, ${{\mathit \kappa}_{{R}}^{b}}$ = ${{\mathit g}_{{R}}}$ = 0 are assumed. See their Fig. 8 for limits on $\sigma \cdot{}\mathit B$.
19  KHACHATRYAN 2016K assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$= 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
20  KHACHATRYAN 2016L search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV using the data scouting technique which increases the sensitivity to the low mass resonances.
21  AAD 2015V assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
22  KHACHATRYAN 2015V assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
23  AAD 2014A assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
24  KHACHATRYAN 2014 use the hadronic decay of ${{\mathit W}}$, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}={{\mathit f}}={{\mathit f}^{\,'}}$ = 1.
25  KHACHATRYAN 2014 use the hadronic decay of ${{\mathit Z}}$, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{s}}}={{\mathit f}}={{\mathit f}^{\,'}}$ = 1.
26  KHACHATRYAN 2014J assume ${{\mathit f}_{{s}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = ${{\mathit \Lambda}}$ $/$ ${\mathit m}_{{{\mathit q}^{*}}}$.
27  CHATRCHYAN 2013AJ use the hadronic decay of ${{\mathit W}}$.
28  CHATRCHYAN 2013AJ use the hadronic decay of ${{\mathit Z}}$.
References:
TUMASYAN 2022O
JHEP 2204 048 Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $ \sqrt{s} $ = 13 TeV
SIRUNYAN 2021AG
JHEP 2112 106 Search for a heavy resonance decaying to a top quark and a W boson at $ \sqrt{s} $ = 13 TeV in the fully hadronic final state
AAD 2020T
JHEP 2003 145 Search for new resonances in mass distributions of jet pairs using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
SIRUNYAN 2020AI
JHEP 2005 033 Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\sqrt{s} =$ 13 TeV
AABOUD 2018AB
PR D98 032016 Search for resonances in the mass distribution of jet pairs with one or two jets identified as $b$-jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
AABOUD 2018BA
EPJ C78 102 Search for new phenomena in high-mass final states with a photon and a jet from $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector
SIRUNYAN 2018P
PR D97 072006 Search for massive resonances decaying into $WW$, $WZ$, $ZZ$, $qW$, and $qZ$ with dijet final states at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$
SIRUNYAN 2018BO
JHEP 1808 130 Search for narrow and broad dijet resonances in proton-proton collisions at $ \sqrt{s}=13 $ TeV and constraints on dark matter mediators and other new particles
SIRUNYAN 2018AG
PL B781 390 Search for excited quarks of light and heavy flavor in $\gamma +$?jet final states in proton?proton collisions at $\sqrt{s} =$ 13TeV
AABOUD 2017AK
PR D96 052004 Search for New Phenomena in Dijet Events using 37 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ Collision Data Collected at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
KHACHATRYAN 2017W
PL B769 520 Search for Dijet Resonances in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV and Constraints on Dark Matter and other Models
AABOUD 2016
PL B759 229 Search for Resonances in the Mass Distribution of Jet Pairs with One or Two Jets Identified as ${\mathit {\mathit b}}$-Jets in Proton-proton Collisions at $\sqrt {s }$ =13 TeV with the ATLAS Detector
AAD 2016S
PL B754 302 Search for New Phenomena in Dijet Mass and Angular Distributions from ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AAD 2016AI
JHEP 1603 041 Search for New Phenomena with Photon $+$ Jet Events in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AAD 2016AH
JHEP 1602 110 Search for the Production of Single Vector-Like and Excited Quarks in the ${{\mathit W}}{\mathit {\mathit t}}$ Final State in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2016AV
EPJ C76 442 Search for Single Production of Vector-like Quarks Decaying into ${{\mathit W}}{\mathit {\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2016K
PRL 116 071801 Search for Narrow Resonances Decaying to Dijets in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
KHACHATRYAN 2016L
PRL 117 031802 Search for Narrow Resonances in Dijet Final States at $\sqrt {s }$ = 8 TeV with the Novel CMS Technique of Data Scouting
KHACHATRYAN 2016I
JHEP 1601 166 Search for the Production of an Excited Bottom Quark Decaying to ${{\mathit t}}{{\mathit W}}$ in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
AAD 2015V
PR D91 052007 Search for New Phenomena in the Dijet Mass Distribution using ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2015V
PR D91 052009 Search for Resonances and Quantum Black Holes using Dijet Mass Spectra in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
AAD 2014A
PL B728 562 Search for New Phenomena in Photon + Jet Events Collected in Proton$−$Proton Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2014
JHEP 1408 173 Search for Massive Resonances in Dijet Systems Containing Jets Tagged as ${{\mathit W}}$ or ${{\mathit Z}}$ Boson Decays in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2014J
PL B738 274 Search for Excited Quarks in the ${{\mathit \gamma}}$ + Jet Final State in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
CHATRCHYAN 2013AJ
PL B723 280 Search for Heavy Resonances in the ${{\mathit W}}/{{\mathit Z}}$-Tagged Dijet Mass Spectrum in ${{\mathit p}}{{\mathit p}}$ Collisions at 7 TeV