Limit on Invisible ${{\mathit A}^{0}}$ (Axion) Electron Coupling

INSPIRE   JSON  (beta) PDGID:
S029AEX
The limit is for $\mathit G_{{{\mathit A}} {{\mathit e}} {{\mathit e}}}\partial{}_{{{\mathit \mu}}}\phi _{\mathit A}{{\overline{\mathit e}}}\gamma {}^{\mu }\gamma _{5}{{\mathit e}}$ in GeV${}^{-1}$, or equivalently, the dipole-dipole potential ${\mathit G{}^{2}_{{{\mathit A}} {{\mathit e}} {{\mathit e}}}\over 4{{\mathit \pi}}}$ (($\mathbf {\sigma }_{1}\cdot{}\mathbf {\sigma }_{2}$) $-3(\mathbf {\sigma }_{1}\cdot{}\mathbf {\mathit n}$) ($\mathbf {\sigma }_{2}\cdot{}\mathbf {\mathit n}))/\mathit r{}^{3}$ where $\mathbf {\mathit n}=\mathbf {\mathit r}/\mathit r$.

VALUE (GeV${}^{-1}$) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<4.4 \times 10^{-10}$ 90 1
ABGRALL
2017
HPGE ${\mathit m}_{{{\mathit A}^{0}}}$ = 11.8 keV
$<3.4 \times 10^{-9}$ 90 2
AKERIB
2017B
LUX Solar axions
$<4.1 \times 10^{-10}$ 90 3
AKERIB
2017B
LUX ${\mathit m}_{{{\mathit A}^{0}}}$ = $1 - 16$ keV
$<2 \times 10^{-10}$ 90 4
APRILE
2017B
X100 ${\mathit m}_{{{\mathit A}^{0}}}$ = 6 keV
$<5 \times 10^{-10}$ 90 5
LIU
2017A
CDEX ${\mathit m}_{{{\mathit A}^{0}}}$ = 13 keV
$<2.5 \times 10^{-8}$ 90 6
LIU
2017A
CDEX Solar axions
$<3.2 \times 10^{-10}$ 68 7
BATTICH
2016
ASTR White dwarf cooling
$<7 \times 10^{-10}$ 8
CORSICO
2016
ASTR White dwarf cooling
$<1.36 \times 10^{-8}$ 90 9
YOON
2016
KIMS Solar axions
$<7.3 \times 10^{-6}$ 95 10
TERRANO
2015
${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 30 $\mu $eV
$<7.8 \times 10^{-10}$ 90 11
ABE
2014F
XMAS ${\mathit m}_{{{\mathit A}^{0}}}$ = 60 keV
$<7.5 \times 10^{-9}$ 90 12
APRILE
2014B
X100 Solar axions
13
APRILE
2014B
X100 ${\mathit m}_{{{\mathit A}^{0}}}$ = $5 - 7$ keV
$< 0.94 - 8.0 \times 10^{-5}$ 90 14
DERBIN
2014
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.1 - 1$ MeV
$<3 \times 10^{-10}$ 99 15
MILLER-BERTOL..
2014
ASTR White dwarf cooling
$<5.3 \times 10^{-8}$ 90 16
ABE
2013D
XMAS Solar axions
$<1.05 \times 10^{-9}$ 90 17
ARMENGAUD
2013
EDEL ${\mathit m}_{{{\mathit A}^{0}}}$ = 12.5 keV
$<2.53 \times 10^{-8}$ 90 18
ARMENGAUD
2013
EDEL Solar axions
19
BARTH
2013
CAST Solar axions
$< 1.4 - 9.5 \times 10^{-4}$ 90 20
DERBIN
2013
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.1 - 1$ MeV
$<2.9 \times 10^{-5}$ 68 21
HECKEL
2013
${\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 0.1 $\mu $eV
$<4.2 \times 10^{-10}$ 95 22
VIAUX
2013A
ASTR Low-mass red giants
$<7 \times 10^{-10}$ 95 23
CORSICO
2012
ASTR White dwarf cooling
$<2.2 \times 10^{-7}$ 90 24
DERBIN
2012
CNTR Solar axions
$<0.02 - 1 \times 10^{-7}$ 90 25
AALSETH
2011
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.3 - 8$ keV
$<1.4 \times 10^{-9}$ 90 26
AHMED
2009A
CDMS ${\mathit m}_{{{\mathit A}^{0}}}$ = 2.5 keV
$<3 \times 10^{-6}$ 27
DAVOUDIASL
2009
ASTR Earth cooling
$<5.3 \times 10^{-5}$ 66 28
NI
1994
Induced magnetism
$<6.7 \times 10^{-5}$ 66 28
CHUI
1993
Induced magnetism
$<3.6 \times 10^{-4}$ 66 29
PAN
1992
Torsion pendulum
$<2.7 \times 10^{-5}$ 95 28
BOBRAKOV
1991
Induced magnetism
$<1.9 \times 10^{-3}$ 66 30
WINELAND
1991
NMR
$<8.9 \times 10^{-4}$ 66 29
RITTER
1990
Torsion pendulum
$<6.6 \times 10^{-5}$ 95 28
VOROBYOV
1988
Induced magnetism
1  ABGRALL 2017 is analogous to AHMED 2009A using the MAJORANA DEMONSTRATOR. See their Fig. 2 for limits between 6 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 97 keV.
2  AKERIB 2017B is analogous to LIU 2017A.
3  AKERIB 2017B is analogous to AHMED 2009A. See their Fig. 7 for mass-dependent limits.
4  APRILE 2017B is analogous to AHMED 2009A. They found a bug in their code and needed to correct the limits in Fig. 7 of APRILE 2014B. See their Fig. 1 for the corrected limits between 1 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 40 keV.
5  LIU 2017A is analogous to AHMED 2009A. See their Fig. 9 for limits between 0.25 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 20 keV.
6  LIU 2017A look for solar axions produced from Compton, bremsstrahlung, atomic-recombination and deexcitation channels, and set a limit for ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 1 keV.
7  BATTICH 2016 is analogous to CORSICO 2016 and used the pulsating DB white dwarf PG 1351+489.
8  CORSICO 2016 studied the cooling rate of the pulsating DA white dwarf L19-2 based on an asteroseismic model.
9  YOON 2016 look for solar axions with the axio-electric effect in ${}^{}\mathrm {CsI}({}^{}\mathrm {Tl}$) crystals and set a limit for ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 1 keV.
10  TERRANO 2015 used a torsion pendulum and rotating attractor with 20-pole electron-spin distributions. See their Fig. 4 for a mass-dependent limit up to ${\mathit m}_{{{\mathit A}^{0}}}$ = 500 $\mu $eV.
11  ABE 2014F set limits on the axioelectric effect in the XMASS detector assuming the pseudoscalar constitutes all the local dark matter. See their Fig. 3 for limits between ${\mathit m}_{{{\mathit A}^{0}}}$ = $40 - 120$ keV.
12  APRILE 2014B look for solar axions using the XENON100 detector.
13  APRILE 2014B is analogous to AHMED 2009A. Their Fig. 7 was later found to be incorrect due to a bug in their code. See Fig. 1 in APRILE 2017B for the corrected limits.
14  DERBIN 2014 is an update of DERBIN 2013 with a BGO scintillating bolometer. See their Fig. 3 for mass-dependent limits.
15  MILLER-BERTOLAMI 2014 studied the impact of axion emission on white dwarf cooling in a self-consistent way.
16  ABE 2013D is analogous to DERBIN 2012, using the XMASS detector.
17  ARMENGAUD 2013 is similar to AALSETH 2011. See their Fig. 10 for limits between 3 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}<$ 100 keV.
18  ARMENGAUD 2013 is similar to DERBIN 2012, and take account of axio-recombination and axio-deexcitation effects. See their Fig. 12 for mass-dependent limits.
19  BARTH 2013 search for solar axions produced by axion-electron coupling, and obtained the limit, $\mathit G_{{{\mathit A}} {{\mathit e}} {{\mathit e}}}\cdot{}\mathit G_{{{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}}}<$ $7.9 \times 10^{-20}$ GeV${}^{-2}$ at 95$\%$CL.
20  DERBIN 2013 looked for 5.5 MeV solar axions produced in ${{\mathit p}}$ ${{\mathit d}}$ $\rightarrow{}^{3}\mathrm {He}{{\mathit A}^{0}}$ in a BGO detector through the axioelectric effect. See their Fig. 4 for mass-dependent limits.
21  HECKEL 2013 studied the influence of 2 or 4 stationary sources each containing $6.0 \times 10^{24}$ polarized electrons, on a rotating torsion pendulum containing $9.8 \times 10^{24}$ polarized electrons. See their Fig. 4 for mass-dependent limits.
22  VIAUX 2013A constrain axion emission using the observed brightness of the tip of the red-giant branch in the globular cluster M5.
23  CORSICO 2012 attributed the excessive cooling rate of the pulsating white dwarf R548 to emission of axions with $\mathit G_{{{\mathit A}}{{\mathit e}}{{\mathit e}}}$ $\simeq{}$ $5 \times 10^{-10}$.
24  DERBIN 2012 look for solar axions with the axio-electric effect in a ${}^{}\mathrm {Si}({}^{}\mathrm {Li}$) detector. The solar production is based on Compton and bremsstrahlung processes.
25  AALSETH 2011 is analogous to AHMED 2009A. See their Fig.$~$4 for mass-dependent limits.
26  AHMED 2009A assume keV-mass pseudoscalars are the local dark matter and constrain the axio-electric effect in the CDMS detector. See their Fig.$~$5 for mass-dependent limits.
27  DAVOUDIASL 2009 use geophysical constraints on Earth cooling by axion emission.
28  These experiments measured induced magnetization of a bulk material by the spin-dependent potential generated from other bulk material with aligned electron spins, where the magnetic field is shielded with superconductor.
29  These experiments used a torsion pendulum to measure the potential between two bulk matter objects where the spins are polarized but without a net magnetic field in either of them.
30  WINELAND 1991 looked for an effect of bulk matter with aligned electron spins on atomic hyperfine splitting using nuclear magnetic resonance.
References