Invisible ${{\mathit A}^{0}}$ (Axion) Limits from Photon Coupling INSPIRE search

Limits are for the modulus of the axion-two-photon coupling $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ defined by $\mathit L~=~−\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }\phi _{\mathit A}\mathbf {E}\mathbf {\cdot{}}\mathbf {B}$. For scalars ${{\mathit S}^{0}}$ the limit is on the coupling constant in $\mathit L~=~\mathit G_{ {{\mathit S}} {{\mathit \gamma}} {{\mathit \gamma}} }\phi _{S}(\mathbf {E}{}^{2}−\mathbf {B}{}^{2}$). The relation between $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ and ${\mathit m}_{{{\mathit A}^{0}}}$ is not used unless stated otherwise, i.e., many of these bounds apply to low-mass axion-like particles (ALPs), not to QCD axions.
VALUE (GeV${}^{-1}$) CL% DOCUMENT ID TECN  COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
$<6 \times 10^{-13}$ 1
TIWARI
2017
COSM ${\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ $10^{-15}$ eV
$<5 \times 10^{-12}$ 95 2
AJELLO
2016
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.5 - 5$ neV
$<1.2 \times 10^{-7}$ 95 3
DELLA-VALLE
2016
LASR ${\mathit m}_{{{\mathit A}^{0}}}$ = 1.3 meV
$<7.2 \times 10^{-8}$ 95 4
DELLA-VALLE
2016
LASR ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 0.5 meV
$<8 \times 10^{-4}$ 5
JAECKEL
2016
ALPS ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.1 - 100$ GeV
$<6 \times 10^{-21}$ 6
LEEFER
2016
${\mathit m}_{{{\mathit S}^{0}}}$ $<$ $10^{-18}$ eV
7
ANASTASSOPOUL..
2015
CAST Chameleons
$<1.47 \times 10^{-10}$ 95 8
ARIK
2015
CAST ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.39 - 0.42$ eV
$<3.5 \times 10^{-8}$ 95 9
BALLOU
2015
LSW ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $2 \times 10^{-4}$ eV
10
BRAX
2015
ASTR ${\mathit m}_{{{\mathit S}^{0}}}$ $<$ $4 \times 10^{-12}$ eV
$<5.42 \times 10^{-4}$ 95 11
HASEBE
2015
LASR ${\mathit m}_{{{\mathit A}^{0}}}$ = 0.15 eV
12
MILLEA
2015
COSM Axion-like particles
13
VANTILBURG
2015
Dilaton-like dark matter
$<4.1 \times 10^{-10}$ 100 14
VINYOLES
2015
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.6 - 185$ eV
$<3.3 \times 10^{-10}$ 95 15
ARIK
2014
CAST ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.64 - 1.17$ eV
$<6.6 \times 10^{-11}$ 95 16
AYALA
2014
ASTR Globular clusters
$<1.4 \times 10^{-7}$ 95 17
DELLA-VALLE
2014
${\mathit m}_{{{\mathit A}^{0}}}$ = 1 meV
18
EJLLI
2014
COSM ${\mathit m}_{{{\mathit A}^{0}}}$ = $2.66 - 48.8$ $\mu $eV
$<8 \times 10^{-8}$ 95 19
PUGNAT
2014
LSW ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 0.3 meV
$<1 \times 10^{-11}$ 20
REESMAN
2014
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $1 \times 10^{-10}$ eV
$<2.1 \times 10^{-11}$ 95 21
ABRAMOWSKI
2013A
IACT ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 60$ neV
$<2.15 \times 10^{-9}$ 95 22
ARMENGAUD
2013
EDEL ${\mathit m}_{{{\mathit A}^{0}}}<$ 200 eV
$<4.5$ 95 23
BETZ
2013
LSW ${\mathit m}_{{{\mathit A}^{0}}}$ = $7.2$ eV
$<8 \times 10^{-11}$ 24
FRIEDLAND
2013
ASTR Red giants
$>2 \times 10^{-11}$ 25
MEYER
2013
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $1 \times 10^{-7}$ eV
$<8.3 \times 10^{-12}$ 95 26
WOUTERS
2013
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $7 \times 10^{-12}$ eV
27
CADAMURO
2012
COSM Axion-like particles
$<2.5 \times 10^{-13}$ 95 28
PAYEZ
2012
ASTR ${\mathit m}_{{{\mathit A}^{0}}}<4.2 \times 10^{-14}$ eV
$<2.3 \times 10^{-10}$ 95 29
ARIK
2011
CAST ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.39 - 0.64$ eV
$<6.5 \times 10^{-8}$ 95 30
EHRET
2010
ALPS ${\mathit m}_{{{\mathit A}^{0}}}<$ 0.7 meV
$<2.4 \times 10^{-9}$ 95 31
AHMED
2009A
CDMS ${\mathit m}_{{{\mathit A}^{0}}}<$ 100 eV
$\text{<1.2 - 2.8}$ 95 32
ARIK
2009
CAST ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.02 - 0.39$ eV
33
CHOU
2009
Chameleons
$<7 \times 10^{-10}$ 34
GONDOLO
2009
ASTR ${\mathit m}_{{{\mathit A}^{0}}}<$ few keV
$<1.3 \times 10^{-6}$ 95 35
AFANASEV
2008
${\mathit m}_{{{\mathit S}^{0}}}<$ 1 meV
$<3.5 \times 10^{-7}$ 100 36
CHOU
2008
${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 0.5 meV
$<1.1 \times 10^{-6}$ 100 37
FOUCHE
2008
${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 1 meV
$\text{<5.6 - 13.4}$ 95 38
INOUE
2008
${\mathit m}_{{{\mathit A}^{0}}}$ = $0.84 - 1.00$ eV
$<5 \times 10^{-7}$ 39
ZAVATTINI
2008
${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 1 meV
$<8.8 \times 10^{-11}$ 95 40
ANDRIAMONJE
2007
CAST ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 0.02 eV
$<1.25 \times 10^{-6}$ 95 41
ROBILLIARD
2007
${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 1 meV
$\text{2 - 5}$ 42
ZAVATTINI
2006
${\mathit m}_{{{\mathit A}^{0}}}$ = $1 - 1.5$ meV
$<1.1 \times 10^{-9}$ 95 43
INOUE
2002
${\mathit m}_{{{\mathit A}^{0}}}$= $0.05 - 0.27$ eV
$<2.78 \times 10^{-9}$ 95 44
MORALES
2002B
${\mathit m}_{{{\mathit A}^{0}}}<$1 keV
$<1.7 \times 10^{-9}$ 90 45
BERNABEI
2001B
${\mathit m}_{{{\mathit A}^{0}}}<$100 eV
$<1.5 \times 10^{-4}$ 90 46
ASTIER
2000B
NOMD ${\mathit m}_{{{\mathit A}^{0}}}<$40 eV
47
MASSO
2000
THEO induced ${{\mathit \gamma}}$ coupling
$<2.7 \times 10^{-9}$ 95 48
AVIGNONE
1998
SLAX ${\mathit m}_{{{\mathit A}^{0}}}<1$ keV
$<6.0 \times 10^{-10}$ 95 49
MORIYAMA
1998
${\mathit m}_{{{\mathit A}^{0}}}<0.03$ eV
$<3.6 \times 10^{-7}$ 95 50
CAMERON
1993
${\mathit m}_{{{\mathit A}^{0}}}<10^{-3}$ eV, optical rotation
$<6.7 \times 10^{-7}$ 95 51
CAMERON
1993
${\mathit m}_{{{\mathit A}^{0}}}<10^{-3}$ eV, photon regeneration
$<3.6 \times 10^{-9}$ 100 52
LAZARUS
1992
${\mathit m}_{{{\mathit A}^{0}}}<0.03$ eV
$<7.7 \times 10^{-9}$ 100 52
LAZARUS
1992
${\mathit m}_{{{\mathit A}^{0}}}$= eV
$<7.7 \times 10^{-7}$ 99 53
RUOSO
1992
${\mathit m}_{{{\mathit A}^{0}}}<10^{-3}$ eV
$<2.5 \times 10^{-6}$ 54
SEMERTZIDIS
1990
${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $7 \times 10^{-4}$ eV
1  TIWARI 2017 use observed limits of the cosmic distance-duality relation to constrain the photon-ALP mixing based on 3D simulations of the magnetic field configuration. The quoted value is for the averaged magnetic field of 1nG with a coherent length of 1 Mpc. See their Fig. 5 for mass-dependent limits.
2  AJELLO 2016 look for irregularities in the energy spectrum of the NGC1275 measured by Fermi LAT, assuming photon-ALP mixing in the intra-cluster and Galactic magnetic felds. See their Fig. 2 for mass-dependent limits.
3  DELLA-VALLE 2016 look for the birefringence induced by axion-like particles. See their Fig. 14 for mass-dependent limits.
4  DELLA-VALLE 2016 look for the dichroism induced by axion-like particles. See their Fig. 14 for mass-dependent limits.
5  JAECKEL 2016 use the LEP data of ${{\mathit Z}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$ and ${{\mathit Z}}$ $\rightarrow$ 3 ${{\mathit \gamma}}$ to constrain the ALP production via ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit A}^{0}}$ ${{\mathit \gamma}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ), assuming the ALP coupling with two hypercharge bosons. See their Fig. 4 for mass-dependent limits.
6  LEEFER 2016 derived limits by using radio-frequency spectroscopy of dysprosium and atomic clock measurements. See their Fig. 1 for mass-dependent limits as well as limits on Yukawa-type couplings of the scalar to the electron and nucleons.
7  ANASTASSOPOULOS 2015 search for solar chameleons with CAST and derived limits on the chameleon coupling to photons and matter. See their Fig. 12 for the exclusion region.
8  ARIK 2015 is analogous to ARIK 2009 , and search for solar axions for ${\mathit m}_{{{\mathit A}^{0}}}$ around 0.2 and 0.4 eV. See their Figs. 1 and 3 for the mass-dependent limits.
9  Based on OSQAR photon regeneration experiment. See their Fig. 6 for mass-dependent limits on scalar and pseudoscalar bosons.
10  BRAX 2015 derived limits on conformal and disformal couplings of a scalar to photons by searching for a chaotic absorption pattern in the X-ray and UV bands of the Hydra A galaxy cluster and a BL lac object, respectively. See their Fig. 8.
11  HASEBE 2015 look for an axion via a four-wave mixing process at quasi-parallel colliding laser beams. They also derived limits on a scalar coupling to photons $\mathit G_{ {{\mathit S}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $<$ $2.62 \times 10^{-4}$ GeV${}^{-1}$ at ${\mathit m}_{{{\mathit S}^{0}}}$ = 0.15 eV. See their Figs. 11 and 12 for mass-dependent limits.
12  MILLEA 2015 is similar to CADAMURO 2012 , including the Planck data and the latest inferences of primordial deuterium abundance. See their Fig. 3 for mass-dependent limits.
13  VANTILBURG 2015 look for harmonic variations in the dyprosium transition frequency data, induced by coherent oscillations of the fine-structure constant due to dilaton-like dark matter, and set the limits, $\mathit G_{ {{\mathit S}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $<$ $6 \times 10^{-27}$ GeV${}^{-1}$ at ${\mathit m}_{{{\mathit S}^{0}}}$ = $6 \times 10^{-23}$ eV. See their Fig. 4 for mass-dependent limits between $1 \times 10^{-24}<$ ${\mathit m}_{{{\mathit S}^{0}}}<$ $1 \times 10^{-15}$ eV.
14  VINYOLES 2015 performed a global fit analysis based on helioseismology and solar neutrino observations. See their Fig. 9.
15  ARIK 2014 is similar to ARIK 2011 . See their Fig. 2 for mass-dependent limits.
16  AYALA 2014 derived the limit from the helium-burning lifetime of horizontal-branch stars based on number counts in globular clusters.
17  DELLA-VALLE 2014 use the new PVLAS apparatus to set a limit on vacuum magnetic birefringence induced by axion-like particles. See their Fig. 6 for the mass-dependent limits.
18  EJLLI 2014 set limits on a product of primordial magnetic field and the axion mass using CMB distortion induced by resonant axion production from CMB photons. See their Fig.$~$1 for limits applying specifically to the DFSZ and KSVZ axion models.
19  PUGNAT 2014 is analogous to EHRET 2010 . See their Fig. 5 for mass-dependent limits on scalar and pseudoscalar bosons.
20  REESMAN 2014 derive limits by requiring effects of axion-photon interconversion on gamma-ray spectra from distant blazars to be no larger than errors in the best-fit optical depth based on a certain extragalactic background light model. See their Fig. 5 for mass-dependent limits.
21  ABRAMOWSKI 2013A look for irregularities in the energy spectrum of the BL Lac object PKS 2155--304 measured by H.E.S.S. The limits depend on assumed magnetic field around the source. See their Fig. 7 for mass-dependent limits.
22  ARMENGAUD 2013 is analogous to AVIGNONE 1998 . See Fig. 6 for the limit.
23  BETZ 2013 performed a microwave-based light shining through the wall experiment. See their Fig. 13 for mass-dependent limits.
24  FRIEDLAND 2013 derived the limit by considering blue-loop suppression of the evolution of red giants with $7 - 12$ solar masses.
25  MEYER 2013 attributed to axion-photon oscillations the observed excess of very high-energy ${{\mathit \gamma}}$-rays with respect to predictions based on extragalactic background light models. See their Fig.4 for mass-dependent lower limits for various magnetic field configurations.
26  WOUTERS 2013 look for irregularities in the X-ray spectrum of the Hydra cluster observed by Chandra. See their Fig. 4 for mass-dependent limits.
27  CADAMURO 2012 derived cosmological limits on $\mathit G_{{{\mathit A}}{{\mathit \gamma}}{{\mathit \gamma}}}$ for axion-like particles. See their Fig. 1 for mass-dependent limits.
28  PAYEZ 2012 derive limits from polarization measurements of quasar light (see their Fig.$~$3). The limits depend on assumed magnetic field strength in galaxy clusters. The limits depend on assumed magnetic field and electron density in the local galaxy supercluster.
29  ARIK 2011 search for solar axions using ${}^{3}\mathrm {He}$ buffer gas in CAST, continuing from the ${}^{4}\mathrm {He}$ version of ARIK 2009 . See Fig.$~$2 for the exact mass-dependent limits.
30  ALPS is a photon regeneration experiment. See their Fig.$~$4 for mass-dependent limits on scalar and pseudoscalar bosons.
31  AHMED 2009A is analogous to AVIGNONE 1998 .
32  ARIK 2009 is the ${}^{4}\mathrm {He}$ filling version of the CAST axion helioscope in analogy to INOUE 2002 and INOUE 2008 . See their Fig.$~$7 for mass-dependent limits.
33  CHOU 2009 use the GammeV apparatus in the afterglow mode to search for chameleons, (pseudo)scalar bosons with a mass depending on the environment. For pseudoscalars they exclude at 3$\sigma $ the range $2.6 \times 10^{-7}$ GeV${}^{-1}<$ ${{\mathit G}}_{A{{\mathit \gamma}}{{\mathit \gamma}}}<$ $4.2 \times 10^{-6}$ GeV${}^{-1}$ for vacuum ${\mathit m}_{{{\mathit A}^{0}}}$ roughly below 6 meV for density scaling index exceeding 0.8.
34  GONDOLO 2009 use the all-flavor measured solar neutrino flux to constrain solar interior temperature and thus energy losses.
35  LIPSS photon regeneration experiment, assuming scalar particle ${{\mathit S}^{0}}$. See Fig.$~$4 for mass-dependent limits.
36  CHOU 2008 perform a variable-baseline photon regeneration experiment. See their Fig.$~$3 for mass-dependent limits. Excludes the PVLAS result of ZAVATTINI 2006 .
37  FOUCHE 2008 is an update of ROBILLIARD 2007 . See their Fig. 12 for mass-dependent limits.
38  INOUE 2008 is an extension of INOUE 2002 to larger axion masses, using the Tokyo axion helioscope. See their Fig. 4 for mass-dependent limits.
39  ZAVATTINI 2008 is an upgrade of ZAVATTINI 2006 , see their Fig.$~$8 for mass-dependent limits. They now exclude the parameter range where ZAVATTINI 2006 had seen a positive signature.
40  ANDRIAMONJE 2007 looked for Primakoff conversion of solar axions in 9T superconducting magnet into X-rays. Supersedes ZIOUTAS 2005 .
41  ROBILLIARD 2007 perform a photon regeneration experiment with a pulsed laser and pulsed magnetic field. See their Fig. 4 for mass-dependent limits. Excludes the PVLAS result of ZAVATTINI 2006 with a CL exceeding 99.9$\%$.
42  ZAVATTINI 2006 propagate a laser beam in a magnetic field and observe dichroism and birefringence effects that could be attributed to an axion-like particle. This result is now excluded by ROBILLIARD 2007 , ZAVATTINI 2008 , and CHOU 2008 .
43  INOUE 2002 looked for Primakoff conversion of solar axions in 4T superconducting magnet into X$~$ray.
44  MORALES 2002B looked for the coherent conversion of solar axions to photons via the Primakoff effect in Germanium detector.
45  BERNABEI 2001B looked for Primakoff coherent conversion of solar axions into photons via Bragg scattering in NaI crystal in DAMA dark matter detector.
46  ASTIER 2000B looked for production of axions from the interaction of high-energy photons with the horn magnetic field and their subsequent re-conversion to photons via the interaction with the NOMAD dipole magnetic field.
47  MASSO 2000 studied limits on axion-proton coupling using the induced axion-photon coupling through the proton loop and CAMERON 1993 bound on the axion-photon coupling using optical rotation. They obtained the bound $\mathit g{}^{2}_{{{\mathit p}}}/4{{\mathit \pi}}<1.7 \times 10^{-9}$ for the coupling $\mathit g_{{{\mathit p}}}{{\overline{\mathit p}}}\gamma _{5}{{\mathit p}}\phi _{\mathit A}$.
48  AVIGNONE 1998 result is based on the coherent conversion of solar axions to photons via the Primakoff effect in a single crystal germanium detector.
49  Based on the conversion of solar axions to $\mathit X$-rays in a strong laboratory magnetic field.
50  Experiment based on proposal by MAIANI 1986 .
51  Experiment based on proposal by VANBIBBER 1987 .
52  LAZARUS 1992 experiment is based on proposal found in VANBIBBER 1989 .
53  RUOSO 1992 experiment is based on the proposal by VANBIBBER 1987 .
54  SEMERTZIDIS 1990 experiment is based on the proposal of MAIANI 1986 . The limit is obtained by taking the noise amplitude as the upper limit. Limits extend to ${\mathit m}_{{{\mathit A}^{0}}}$ = $4 \times 10^{-3}$ where $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $<$ $1 \times 10^{-4}$ GeV${}^{-1}$.
  References:
TIWARI 2017
PR D95 023005 Constraining Axionlike Particles using the Distance-Duality Relation
AJELLO 2016
PRL 116 161101 Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope
DELLA-VALLE 2016
EPJ C76 24 The PVLAS Experiment: Measuring Vacuum Magnetic Birefringence and Dichroism with a Birefringent Fabry–Perot Cavity
JAECKEL 2016
PL B753 482 Probing MeV to 90 GeV Axion-Like Particles with LEP and LHC
LEEFER 2016
PRL 117 271601 Search for the Effect of Massive Bodies on Atomic Spectra and Constraints on Yukawa-Type Interactions of Scalar Particles
ANASTASSOPOULOS 2015
PL B749 172 Search for Chameleons with CAST
ARIK 2015
PR D92 021101 New Solar Axion Search using the CERN Axion Solar Telescope with ${}^{4}\mathrm {He}$ Filling
BALLOU 2015
PR D92 092002 New Exclusion Limits on Scalar and Pseudoscalar Axionlike Particles from Light Shining through a Wall
BRAX 2015
PR D92 083501 Galaxy Cluster Constraints on the Coupling to Photons of Low-Mass Scalars
HASEBE 2015
PTEP 2015 073C01 Search for sub-eV Scalar and Pseudoscalar Resonances via Four-Wave Mixing with a Laser Collider
MILLEA 2015
PR D92 023010 New Bounds for Axions and Axion-Like Particles with keV-GeV Masses
VANTILBURG 2015
PRL 115 011802 Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy
VINYOLES 2015
JCAP 1510 015 New Axion and Hidden Photon Constraints from a Solar Data Global Fit
ARIK 2014
PRL 112 091302 Search for Solar Axions by the CERN Axion Solar Telescope with ${}^{3}\mathrm {He}$ Buffer Gas: Closing the Hot Dark Matter Gap
AYALA 2014
PRL 113 191302 Revisiting the Bound on Axion-Photon Coupling from Globular Clusters
DELLA-VALLE 2014
PR D90 092003 First Results from the New PVLAS Apparatus: A New Limit on Vacuum Magnetic Birefringence
EJLLI 2014
PR D90 123527 Bounds on QCD Axion Mass and Primordial Magnetic Field from CMB ${{\mathit \mu}}$-Distortion
PUGNAT 2014
EPJ C74 3027 Search for Weakly Interacting sub-eV Particles with the OSQAR Laser-Based Experiment: Results and Perspectives
REESMAN 2014
JCAP 1408 021 Probing the Scale of ALP Interactions with Fermi Blazars
ABRAMOWSKI 2013A
PR D88 102003 Constraints on Axionlike Particles with H.E.S.S. from the Irregularity of the PKS $2155 - 304$ Energy Spectrum
ARMENGAUD 2013
JCAP 1311 067 Axion Searches with the EDELWEISS-II Experiment
BETZ 2013
PR D88 075014 First Results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS)
FRIEDLAND 2013
PRL 110 061101 Constraining the Axion-Photon Coupling with Massive Stars
MEYER 2013
PR D87 035027 First Lower Limits on the Photon-Axion-Like Particle Coupling from very High Energy ${{\mathit \gamma}}$-Ray Observation
WOUTERS 2013
APJ 772 44 Constraints on Axion-like Particles from X-Ray Observations of the Hydra Galaxy Cluster
CADAMURO 2012
JCAP 1202 032 Cosmological Bounds on Pseudo Nambu-Goldstone Bosons
PAYEZ 2012
JCAP 1207 041 New Polarimetric Constraints on Axion-Like Particles
ARIK 2011
PRL 107 261302 Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with ${}^{3}\mathrm {He}$ Buffer Gas
EHRET 2010
PL B689 149 New ALPS Results on Hidden-Sector Lightweights
AHMED 2009A
PRL 103 141802 Search for Axions with the CDMS Experiment
ARIK 2009
JCAP 0902 008 Probing eV-Scale Axions with CAST
CHOU 2009
PRL 102 030402 Search for Chameleon Particles using a Photon-Regeneration Technique
GONDOLO 2009
PR D79 107301 Solar Neutrino Limit on Axions and keV-Mass Bosons
AFANASEV 2008
PRL 101 120401 Experimental Limit on Optical-Photon Coupling to Light Neutral Scalar Bosons
CHOU 2008
PRL 100 080402 Search for Axionlike Particles Using a Variable-Baseline Photon-Regeneration Technique
FOUCHE 2008
PR D78 032013 Search for Photon Oscillations into Massive Particles
INOUE 2008
PL B668 93 Search for Solar Axions with Mass Around 1 eV using Coherent Conversion of Axions into Photons
ZAVATTINI 2008
PR D77 032006 New PVLAS Results and Limits on Magnetically Induced Optical Rotation and Ellipticity in Vacuum
ANDRIAMONJE 2007
JCAP 0704 010 An Improved Limit on the Axion-Photon Coupling from the CAST Experiment
ROBILLIARD 2007
PRL 99 190403 No "Light Shining through a Wall": Results from a Photoregeneration Experiment
ZAVATTINI 2006
PRL 96 110406 Experimental Observation of Optical Rotation Generated in Vacuum by a Magnetic Field
INOUE 2002
PL B536 18 Search for Sub-electronvolt Solar Axions using Coherent Conversion of Axions into Photons in Magnetic Field and Gas Helium
MORALES 2002B
ASP 16 325 Particle Dark Matter and Solar Axion Searches with a Small Germanium Detector at the Canfranc Underground Laboratory
BERNABEI 2001B
PL B515 6 Search for Solar Axions by Primakoff Effect in NaI Crystals
ASTIER 2000B
PL B479 371 Search for eV (pseudo)scalar Penetrating Particles in the SPS Neutrino Beam
MASSO 2000
PR D61 011701 Bounds on the Coupling of Light Pseudoscalars to Nucleons from Optical Laser Experiments
AVIGNONE 1998
PRL 81 5068 Experimental Search for Solar Axions via Coherent Primakoff Conversion in a Germanium Spectrometer
MORIYAMA 1998
PL B434 147 Direct Search for Solar Axions by using Strong Magnetic Field and X-ray Detectors
CAMERON 1993
PR D47 3707 Search for Nearly Massless, Weakly Coupled Particles by Optical Techniques
LAZARUS 1992
PRL 69 2333 A Search for Solar Axions
RUOSO 1992
ZPHY C56 505 Limits on Light Scalar and Pseudoscalar Particles from a Photon Regeneration Experiment
SEMERTZIDIS 1990
PRL 64 2988 Limits on the Production of Light Scalar and Pseudoscalar Particles
VANBIBBER 1987
PRL 59 759 An Experiment to Produce and Detect Light Pseudoscalars
ZIOUTAS 2005
PRL 94 121301 First Results from the CERN Axion Solar Telescope
VANBIBBER 1989
PR D39 2089 A Practical Laboratory Detector for Solar Axions
MAIANI 1986
PL B175 359 Effects of Nearly Massless, Spin Zero Particles on Light Propagation in a Magnetic Field