Limit on Invisible ${{\mathit A}^{0}}$ (Axion) Electron Coupling

INSPIRE   PDGID:
S029AEX
The limit is for $\mathit G_{ {{\mathit A}} {{\mathit e}} {{\mathit e}} }\partial{}_{{{\mathit \mu}}}\phi _{\mathit A}{{\overline{\mathit e}}}\gamma {}^{\mu }\gamma _{5}{{\mathit e}}$ in GeV${}^{-1}$, or equivalently, the dipole-dipole potential ${\mathit G{}^{2}_{ {{\mathit A}} {{\mathit e}} {{\mathit e}} }\over 4{{\mathit \pi}}}$ (($\mathbf {\sigma }_{1}\cdot{}\mathbf {\sigma }_{2}$) $-3(\mathbf {\sigma }_{1}\cdot{}\mathbf {\mathit n}$) ($\mathbf {\sigma }_{2}\cdot{}\mathbf {\mathit n}))/\mathit r{}^{3}$ where $\mathbf {\mathit n}=\mathbf {\mathit r}/\mathit r$.

VALUE (GeV${}^{-1}$) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<4.4 \times 10^{-10}$ 90 1
ABGRALL
2017
HPGE ${\mathit m}_{{{\mathit A}^{0}}}$ = 11.8 keV
$<3.4 \times 10^{-9}$ 90 2
AKERIB
2017B
LUX Solar axions
$<4.1 \times 10^{-10}$ 90 3
AKERIB
2017B
LUX ${\mathit m}_{{{\mathit A}^{0}}}$ = $1 - 16$ keV
$<2 \times 10^{-10}$ 90 4
APRILE
2017B
X100 ${\mathit m}_{{{\mathit A}^{0}}}$ = 6 keV
$<5 \times 10^{-10}$ 90 5
LIU
2017A
CDEX ${\mathit m}_{{{\mathit A}^{0}}}$ = 13 keV
$<2.5 \times 10^{-8}$ 90 6
LIU
2017A
CDEX Solar axions
$<3.2 \times 10^{-10}$ 68 7
BATTICH
2016
ASTR White dwarf cooling
$<7 \times 10^{-10}$ 8
CORSICO
2016
ASTR White dwarf cooling
$<1.36 \times 10^{-8}$ 90 9
YOON
2016
KIMS Solar axions
$<7.3 \times 10^{-6}$ 95 10
TERRANO
2015
${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 30 $\mu $eV
$<7.8 \times 10^{-10}$ 90 11
ABE
2014F
XMAS ${\mathit m}_{{{\mathit A}^{0}}}$ = 60 keV
$<7.5 \times 10^{-9}$ 90 12
APRILE
2014B
X100 Solar axions
13
APRILE
2014B
X100 ${\mathit m}_{{{\mathit A}^{0}}}$ = $5 - 7$ keV
$< 0.94 - 8.0 \times 10^{-5}$ 90 14
DERBIN
2014
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.1 - 1$ MeV
$<3 \times 10^{-10}$ 99 15
MILLER-BERTOL..
2014
ASTR White dwarf cooling
$<5.3 \times 10^{-8}$ 90 16
ABE
2013D
XMAS Solar axions
$<1.05 \times 10^{-9}$ 90 17
ARMENGAUD
2013
EDEL ${\mathit m}_{{{\mathit A}^{0}}}$ = 12.5 keV
$<2.53 \times 10^{-8}$ 90 18
ARMENGAUD
2013
EDEL Solar axions
19
BARTH
2013
CAST Solar axions
$< 1.4 - 9.5 \times 10^{-4}$ 90 20
DERBIN
2013
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.1 - 1$ MeV
$<2.9 \times 10^{-5}$ 68 21
HECKEL
2013
${\mathit m}_{{{\mathit A}^{0}}}{}\leq{}$ 0.1 $\mu $eV
$<4.2 \times 10^{-10}$ 95 22
VIAUX
2013A
ASTR Low-mass red giants
$<7 \times 10^{-10}$ 95 23
CORSICO
2012
ASTR White dwarf cooling
$<2.2 \times 10^{-7}$ 90 24
DERBIN
2012
CNTR Solar axions
$<0.02 - 1 \times 10^{-7}$ 90 25
AALSETH
2011
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.3 - 8$ keV
$<1.4 \times 10^{-9}$ 90 26
AHMED
2009A
CDMS ${\mathit m}_{{{\mathit A}^{0}}}$ = 2.5 keV
$<3 \times 10^{-6}$ 27
DAVOUDIASL
2009
ASTR Earth cooling
$<5.3 \times 10^{-5}$ 66 28
NI
1994
Induced magnetism
$<6.7 \times 10^{-5}$ 66 28
CHUI
1993
Induced magnetism
$<3.6 \times 10^{-4}$ 66 29
PAN
1992
Torsion pendulum
$<2.7 \times 10^{-5}$ 95 28
BOBRAKOV
1991
Induced magnetism
$<1.9 \times 10^{-3}$ 66 30
WINELAND
1991
NMR
$<8.9 \times 10^{-4}$ 66 29
RITTER
1990
Torsion pendulum
$<6.6 \times 10^{-5}$ 95 28
VOROBYOV
1988
Induced magnetism
1  ABGRALL 2017 is analogous to AHMED 2009A using the MAJORANA DEMONSTRATOR. See their Fig. 2 for limits between 6 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 97 keV.
2  AKERIB 2017B is analogous to LIU 2017A.
3  AKERIB 2017B is analogous to AHMED 2009A. See their Fig. 7 for mass-dependent limits.
4  APRILE 2017B is analogous to AHMED 2009A. They found a bug in their code and needed to correct the limits in Fig. 7 of APRILE 2014B. See their Fig. 1 for the corrected limits between 1 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 40 keV.
5  LIU 2017A is analogous to AHMED 2009A. See their Fig. 9 for limits between 0.25 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 20 keV.
6  LIU 2017A look for solar axions produced from Compton, bremsstrahlung, atomic-recombination and deexcitation channels, and set a limit for ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 1 keV.
7  BATTICH 2016 is analogous to CORSICO 2016 and used the pulsating DB white dwarf PG 1351+489.
8  CORSICO 2016 studied the cooling rate of the pulsating DA white dwarf L19-2 based on an asteroseismic model.
9  YOON 2016 look for solar axions with the axio-electric effect in ${}^{}\mathrm {CsI}({}^{}\mathrm {Tl}$) crystals and set a limit for ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 1 keV.
10  TERRANO 2015 used a torsion pendulum and rotating attractor with 20-pole electron-spin distributions. See their Fig. 4 for a mass-dependent limit up to ${\mathit m}_{{{\mathit A}^{0}}}$ = 500 $\mu $eV.
11  ABE 2014F set limits on the axioelectric effect in the XMASS detector assuming the pseudoscalar constitutes all the local dark matter. See their Fig. 3 for limits between ${\mathit m}_{{{\mathit A}^{0}}}$ = $40 - 120$ keV.
12  APRILE 2014B look for solar axions using the XENON100 detector.
13  APRILE 2014B is analogous to AHMED 2009A. Their Fig. 7 was later found to be incorrect due to a bug in their code. See Fig. 1 in APRILE 2017B for the corrected limits.
14  DERBIN 2014 is an update of DERBIN 2013 with a BGO scintillating bolometer. See their Fig. 3 for mass-dependent limits.
15  MILLER-BERTOLAMI 2014 studied the impact of axion emission on white dwarf cooling in a self-consistent way.
16  ABE 2013D is analogous to DERBIN 2012 , using the XMASS detector.
17  ARMENGAUD 2013 is similar to AALSETH 2011 . See their Fig. 10 for limits between 3 keV $<$ ${\mathit m}_{{{\mathit A}^{0}}}<$ 100 keV.
18  ARMENGAUD 2013 is similar to DERBIN 2012 , and take account of axio-recombination and axio-deexcitation effects. See their Fig. 12 for mass-dependent limits.
19  BARTH 2013 search for solar axions produced by axion-electron coupling, and obtained the limit, $\mathit G_{ {{\mathit A}} {{\mathit e}} {{\mathit e}} }\cdot{}\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }<$ $7.9 \times 10^{-20}$ GeV${}^{-2}$ at 95$\%$CL.
20  DERBIN 2013 looked for 5.5 MeV solar axions produced in ${{\mathit p}}$ ${{\mathit d}}$ $\rightarrow$ ${}^{3}\mathrm {He}{{\mathit A}^{0}}$ in a BGO detector through the axioelectric effect. See their Fig. 4 for mass-dependent limits.
21  HECKEL 2013 studied the influence of 2 or 4 stationary sources each containing $6.0 \times 10^{24}$ polarized electrons, on a rotating torsion pendulum containing $9.8 \times 10^{24}$ polarized electrons. See their Fig. 4 for mass-dependent limits.
22  VIAUX 2013A constrain axion emission using the observed brightness of the tip of the red-giant branch in the globular cluster M5.
23  CORSICO 2012 attributed the excessive cooling rate of the pulsating white dwarf R548 to emission of axions with $\mathit G_{{{\mathit A}}{{\mathit e}}{{\mathit e}}}$ $\simeq{}$ $5 \times 10^{-10}$.
24  DERBIN 2012 look for solar axions with the axio-electric effect in a ${}^{}\mathrm {Si}({}^{}\mathrm {Li}$) detector. The solar production is based on Compton and bremsstrahlung processes.
25  AALSETH 2011 is analogous to AHMED 2009A. See their Fig.$~$4 for mass-dependent limits.
26  AHMED 2009A assume keV-mass pseudoscalars are the local dark matter and constrain the axio-electric effect in the CDMS detector. See their Fig.$~$5 for mass-dependent limits.
27  DAVOUDIASL 2009 use geophysical constraints on Earth cooling by axion emission.
28  These experiments measured induced magnetization of a bulk material by the spin-dependent potential generated from other bulk material with aligned electron spins, where the magnetic field is shielded with superconductor.
29  These experiments used a torsion pendulum to measure the potential between two bulk matter objects where the spins are polarized but without a net magnetic field in either of them.
30  WINELAND 1991 looked for an effect of bulk matter with aligned electron spins on atomic hyperfine splitting using nuclear magnetic resonance.
References:
ABGRALL 2017
PRL 118 161801 New limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator
AKERIB 2017B
PRL 118 261301 First Searches for Axions and Axionlike Particles with the LUX Experiment
APRILE 2017B
PR D95 029904 Erratum to APRILE 2014B: First Axion Results from the XENON100 Experiment
LIU 2017A
PR D95 052006 Constraints on Axion Couplings from the CDEX-1 Experiment at the China Jinping Underground Laboratory
BATTICH 2016
JCAP 1608 062 First Axion Bounds from a Pulsating Helium-Rich White Dwarf Star
CORSICO 2016
JCAP 1607 036 An Asteroseismic Constraint on the Mass of the Axion from the Period Drift of the Pulsating DA White Dwarf Star L19-2
YOON 2016
JHEP 1606 011 Search for Solar Axions with CsI(Tl) Crystal Detectors
TERRANO 2015
PRL 115 201801 Short-Range Spin-Dependent Interactions of Electrons: a Probe for Exotic Pseudo-Goldstone Bosons
ABE 2014F
PRL 113 121301 Search for Bosonic Superweakly Interacting Massive Dark Matter Particles with the XMASS-I Detector
APRILE 2014B
PR D90 062009 First Axion Results from the XENON100 Experiment
DERBIN 2014
EPJ C74 3035 Search for Axioelectric Effect of Solar Axions using BGO Scintillating Bolometer
MILLER-BERTOLAMI 2014
JCAP 1410 069 Revisiting the Axion Bounds from the Galactic White Dwarf Luminosity Function
ABE 2013D
PL B724 46 Search for Solar Axions in XMASS, a Large Liquid-Xenon Detector
ARMENGAUD 2013
JCAP 1311 067 Axion Searches with the EDELWEISS-II Experiment
BARTH 2013
JCAP 1305 010 CAST Constraints on the Axion-Electron Coupling
DERBIN 2013
EPJ C73 2490 Search for Axioelectric Effect of 5.5 MeV Solar Axions using BGO Detectors
HECKEL 2013
PRL 111 151802 Limits on Exotic Long-Range Spin-Spin Interactions of Electrons
VIAUX 2013A
PRL 111 231301 Neutrino and Axion Bounds from the Globular Cluster M5 (NGC 5904)
CORSICO 2012
JCAP 1212 010 An Independent Limit on the Axion Mass from the Variable White Dwarf Star R548
DERBIN 2012
JETPL 95 339 Constraints on the Axion-Electron Coupling Constant for Solar Axions Appearing Owing to Bremsstrahlung and the Compton Process
AALSETH 2011
PRL 106 131301 Results from a Search for Light-Mass Dark Matter with a $\mathit p$-Type Point Contact Germanium Detector
AHMED 2009A
PRL 103 141802 Search for Axions with the CDMS Experiment
DAVOUDIASL 2009
PR D79 095024 Thermal Production of Axions in the Earth
NI 1994
Physica B194 153 Search for Anomalous Spin-Spin Interactions between Electrons using a DC SQUID
CHUI 1993
PRL 71 3247 Experimental Search for Anomalous Spin-Spin Interaction between Electrons
PAN 1992
MPL A7 1287 Experimental Search for Anomalous Spin-Spin Interactions
BOBRAKOV 1991
JETPL 53 294 An Experimental Limit on the Existence of the Electron Quasimagnetic (Arion) Interaction
WINELAND 1991
PRL 67 1735 Search for Anomalous Spin Dependent Forces Using Stored Ion Spectroscopy
RITTER 1990
PR D42 977 Experimental Test of Equivalence Principle with Polarized Masses
VOROBYOV 1988
PL B208 146 New Limit on the Arion Interaction Constant