${{\mathit A}^{0}}$ (Axion) Production in Hadron Collisions

INSPIRE   PDGID:
S029AXP
Limits are for ${\mathit \sigma (}{{\mathit A}^{0}}{)}$ $/$ ${\mathit \sigma (}{{\mathit \pi}^{0}}{)}$.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
1
AAD
2022J
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ , ${{\mathit Z}}{{\mathit A}^{0}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )
2
TUMASYAN
2022AH
CMS ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
3
TUMASYAN
2022R
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit A}^{*0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$ , ${{\mathit Z}}{{\mathit H}}$
4
AAD
2021F
ATLS Monojet + missing $p_T$
5
AAD
2021K
ATLS Mono-${{\mathit \gamma}}$ + missing $p_T$
6
AAD
2021N
ATLS ${{\mathit \gamma}}{{\mathit \gamma}}$ scatt. in ${}^{}\mathrm {Pb}+{}^{}\mathrm {Pb}$
7
CARRA
2021
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit A}^{*0}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit Z}}{{\mathit \gamma}}$
8
AAIJ
2020AL
LHCB ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
9
GAVELA
2020
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit A}^{*0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit Z}}{{\mathit Z}}$
10
SIRUNYAN
2019BQ
CMS ${{\mathit X}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
11
JAIN
2007
CNTR ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
12
AHMAD
1997
SPEC ${{\mathit e}^{+}}$ production
13
LEINBERGER
1997
SPEC ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
14
GANZ
1996
SPEC ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
15
KAMEL
1996
EMUL ${}^{32}\mathrm {S}$ emulsion, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
16
BLUEMLEIN
1992
BDMP ${{\mathit A}^{0}}$ ${{\mathit N}_{{Z}}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit N}_{{Z}}}$
17
MEIJERDREES
1992
SPEC ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit n}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
18
BLUEMLEIN
1991
BDMP ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , 2${{\mathit \gamma}}$
19
FAISSNER
1989
OSPK Beam dump, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
20
DEBOER
1988
RVUE ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
21
EL-NADI
1988
EMUL ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
22
FAISSNER
1988
OSPK Beam dump, ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$
23
BADIER
1986
BDMP ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$<2. \times 10^{-11}$ 90 24
BERGSMA
1985
CHRM CERN beam dump
$<1. \times 10^{-13}$ 90 24
BERGSMA
1985
CHRM CERN beam dump
25
FAISSNER
1983
OSPK Beam dump, ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$
26
FAISSNER
1983B
RVUE LAMPF beam dump
27
FRANK
1983B
RVUE LAMPF beam dump
28
HOFFMAN
1983
CNTR ${{\mathit \pi}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit n}}{{\mathit A}^{0}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ )
29
FETSCHER
1982
RVUE See FAISSNER 1981B
30
FAISSNER
1981
OSPK CERN PS ${{\mathit \nu}}$ wideband
31
FAISSNER
1981B
OSPK Beam dump, ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$
32
KIM
1981
OSPK 26 GeV ${{\mathit p}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit A}^{0}}$ X
33
FAISSNER
1980
OSPK Beam dump, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$<1. \times 10^{-8}$ 90 34
JACQUES
1980
HLBC 28 GeV protons
$<1. \times 10^{-14}$ 90 34
JACQUES
1980
HLBC Beam dump
35
SOUKAS
1980
CALO 28 GeV ${{\mathit p}}$ beam dump
36
BECHIS
1979
CNTR
$<1. \times 10^{-8}$ 90 37
COTEUS
1979
OSPK Beam dump
$<1. \times 10^{-3}$ 95 38
DISHAW
1979
CALO 400 GeV ${{\mathit p}}{{\mathit p}}$
$<1. \times 10^{-8}$ 90
ALIBRAN
1978
HYBR Beam dump
$<6. \times 10^{-9}$ 95
ASRATYAN
1978B
CALO Beam dump
$<1.5 \times 10^{-8}$ 90 39
BELLOTTI
1978
HLBC Beam dump
$<5.4 \times 10^{-14}$ 90 39
BELLOTTI
1978
HLBC ${\mathit m}_{{{\mathit A}^{0}}}=1.5$ MeV
$<4.1 \times 10^{-9}$ 90 39
BELLOTTI
1978
HLBC ${\mathit m}_{{{\mathit A}^{0}}}$=1 MeV
$<1. \times 10^{-8}$ 90 40
BOSETTI
1978B
HYBR Beam dump
41
DONNELLY
1978
$<0.5 \times 10^{-8}$ 90
HANSL
1978D
WIRE Beam dump
42
MICELMACHER
1978
43
VYSOTSKII
1978
1  AAD 2022J set upper limits for the cross sections of ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ 4 ${{\mathit \mu}}$ and ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \ell}}$2 ${{\mathit \mu}}$ . See their Figs. 14 and 17 for the respective mass-dependent limits.
2  TUMASYAN 2022AH set the limits of $\mathit O(10^{-6}$) with respect to the product of the branching fractions of ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ and ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ . They also derive limits on the effective axion couplings contributing to ${{\mathit H}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ and ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit A}^{0}}$ . See their Figs. 5 and 7 for the limits.
3  TUMASYAN 2022R is analogous to GAVELA 2020 , and set a limit on the products of the axion couplings to gluons and ${{\mathit Z}}$ bosons as $\mathit G_{ {{\mathit A}} {{\mathit Z}} {{\mathit Z}} }$ $\mathit G_{ {{\mathit A}} {{\mathit g}} {{\mathit g}} }$ $<$ $6.64 \times 10^{-7}$ GeV${}^{-2}$ at 95$\%$ CL for $\mathit f_{{{\mathit A}^{0}}}$ = 3 TeV and ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 100 GeV. Here we use $\mathit c_{{{\widetilde{\mathit G}}}}$ = $\mathit G_{ {{\mathit A}} {{\mathit g}} {{\mathit g}} }$ $\mathit f_{{{\mathit A}^{0}}}$/4 and $\mathit c_{{{\widetilde{\mathit Z}}}}$ = $\mathit G_{ {{\mathit A}} {{\mathit Z}} {{\mathit Z}} }$ $\mathit f_{{{\mathit A}^{0}}}$/4 to translate their limits. They also set a limit on the product of the axion couplings to gluons and ${{\mathit Z}}{{\mathit H}}$ . See their Fig. 9 for the $\mathit f_{{{\mathit A}^{0}}}$-dependent limits.
4  AAD 2021F look for axion production with an energetic jet and large missing $p_T$, and set a limit on the axion coupling to gluons, $\mathit c_{{{\widetilde{\mathit G}}}}/\mathit f_{{{\mathit A}^{0}}}$ $<$ $8 \times 10^{-6}$ GeV${}^{-1}$ at 95 $\%$ CL for ${\mathit m}_{{{\mathit A}^{0}}}$ = 1 MeV. Using $\mathit c_{{{\widetilde{\mathit G}}}}$ = $\alpha _{s}/8\pi $, we interpret the limit as $\mathit f_{{{\mathit A}^{0}}}$ $>$ $0.4$ TeV for $\alpha _{s}$ $\simeq{}$ 0.08.
5  AAD 2021K look for axion production with an energetic photon and large missing $p_T$, and set a limit on the axion coupling to a ${{\mathit Z}}$ boson and photon, $\mathit G_{ {{\mathit A}} {{\mathit Z}} {{\mathit \gamma}} }$ $<$ $5.1 \times 10^{-4}$ GeV${}^{-1}$ at 95 $\%$ CL for ${\mathit m}_{{{\mathit A}^{0}}}$ = 1 MeV and assuming $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ = 0.
6  AAD 2021N look for axion production using the measurement of light-by-light scattering based on ${}^{}\mathrm {Pb}+{}^{}\mathrm {Pb}$ collision data. They set the limit on the axion-photon coupling, $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $<$ $5.3 \times 10^{-5} - 3.4 \times 10^{-4}$ GeV${}^{-1}$ at 95 $\%$ CL for ${\mathit m}_{{{\mathit A}^{0}}}$ = $6 - 100$ GeV. Here we use $\Lambda _{a}$ =$\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }{}^{-1}$ to translate their limits. See their Fig. 9 for mass-dependent limits.
7  CARRA 2021 is analogous to GAVELA 2020 , and they use the differential cross sections for ${{\mathit W}}{{\mathit W}}$ and ${{\mathit Z}}{{\mathit \gamma}}$ production measured with the ATLAS detector to set limits on the product of the axion couplings to gauge bosons as $\mathit G_{ {{\mathit A}} {{\mathit W}} {{\mathit W}} }$ $\mathit G_{ {{\mathit A}} {{\mathit g}} {{\mathit g}} }$ $<$ $6.2 \times 10^{-7}$ GeV${}^{-2}$ and $\mathit G_{ {{\mathit A}} {{\mathit Z}} {{\mathit \gamma}} }$ $\mathit G_{ {{\mathit A}} {{\mathit g}} {{\mathit g}} }$ $<$ $3.7 \times 10^{-7}$ GeV${}^{-2}$ at 95 $\%$ CL for ${\mathit m}_{{{\mathit A}^{0}}}{ {}\lesssim{} }$ 100 GeV.
8  AAIJ 2020AL look for a light new boson decaying into a pair of muons using the LHCb data with an integrated luminosity of 5.1 fb${}^{-1}$, and set limits on the cross section over a range of ${\mathit m}_{{{\mathit X}^{0}}}$ = $0.22 - 3$ and $20 - 60$ GeV. See Figs. 8 and 9 for mass-dependent limits.
9  GAVELA 2020 focus on the axion production as an s-channel off shell mediator, and use the Run 2 CMS public data to set limits on the product of the axion couplings to gluons and photons as well as ${{\mathit Z}}$ bosons as $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $\mathit G_{ {{\mathit A}} {{\mathit g}} {{\mathit g}} }$ $<$ $2.8 \times 10^{-7}$ GeV${}^{-2}$ and $\mathit G_{ {{\mathit A}} {{\mathit Z}} {{\mathit Z}} }$ $\mathit G_{ {{\mathit A}} {{\mathit g}} {{\mathit g}} }$ $<$ $9.8 \times 10^{-7}$ GeV${}^{-2}$ for ${\mathit m}_{{{\mathit A}^{0}}}{ {}\lesssim{} }$ 200 GeV. See their Fig.3 for the limits.
10  SIRUNYAN 2019BQ look for the pair production of a new light boson decaying into a pair of muons, and set limits on the product of the production cross section times branching fraction to dimuons squared times acceptance over a range of ${\mathit m}_{{{\mathit X}^{0}}}$ = $0.25 - 8.5$ GeV. See the right panel of their Fig. 1 for mass-dependent limits.
11  JAIN 2007 claims evidence for ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ produced in ${}^{207}\mathrm {Pb}$ collision on nuclear emulsion (${}^{}\mathrm {Ag}/{}^{}\mathrm {Br}$) for $\mathit m({{\mathit A}^{0}}$) = $7$ $\pm1$ or $19$ $\pm1$ MeV and $\tau ({{\mathit A}^{0}}$) ${}\leq{}$ $10^{-13}$ s.
12  AHMAD 1997 reports a result of APEX Collaboration which studied positron production in ${}^{238}\mathrm {U}+{}^{232}\mathrm {Ta}$ and ${}^{238}\mathrm {U}+{}^{181}\mathrm {Ta}$ collisions, without requiring a coincident electron. No narrow lines were found for $250<\mathit E_{{{\mathit e}^{+}}}<750$ keV.
13  LEINBERGER 1997 (ORANGE Collaboration) at GSI looked for a narrow sum-energy ${{\mathit e}^{+}}{{\mathit e}^{-}}$ -line at $\sim{}635~$keV in ${}^{238}\mathrm {U}+{}^{181}\mathrm {Ta}$ collision. Limits on the production probability for a narrow sum-energy ${{\mathit e}^{+}}{{\mathit e}^{-}}$ line are set. See their Table$~$2.
14  GANZ 1996 (EPos$~$II Collaboration) has placed upper bounds on the production cross section of ${{\mathit e}^{+}}{{\mathit e}^{-}}$ pairs from ${}^{238}\mathrm {U}+{}^{181}\mathrm {Ta}$ and ${}^{238}\mathrm {U}+{}^{232}\mathrm {Th}$ collisions at GSI. See Table$~$2 for limits both for back-to-back and isotropic configurations of ${{\mathit e}^{+}}{{\mathit e}^{-}}$ pairs. These limits rule out the existence of peaks in the ${{\mathit e}^{+}}{{\mathit e}^{-}}$ sum-energy distribution, reported by an earlier version of this experiment.
15  KAMEL 1996 looked for ${{\mathit e}^{+}}{{\mathit e}^{-}}$ pairs from the collision of ${}^{32}\mathrm {S}$ (200$~$GeV/nucleon) and emulsion. No evidence of mass peaks is found in the region of sensitivity ${\mathit m}_{\mathrm { {{\mathit e}} {{\mathit e}} }}>$2 MeV.
16  BLUEMLEIN 1992 is a proton beam dump experiment at Serpukhov with a secondary target to induce Bethe-Heitler production of ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ from the produce ${{\mathit A}^{0}}$. See Fig.$~$5 for the excluded region in ${\mathit m}_{{{\mathit A}^{0}}}-\mathit x$ plane. For the standard axion, $0.3<\mathit x<$25 is excluded at 95$\%$ CL. If combined with BLUEMLEIN 1991 , $0.008<\mathit x<$32 is excluded.
17  MEIJERDREES 1992 give $\Gamma\mathrm {( {{\mathit \pi}^{-}} {{\mathit p}} \rightarrow {{\mathit n}} {{\mathit A}^{0}} )}\cdot{}$B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ )$/\Gamma\mathrm {( {{\mathit \pi}^{-}} {{\mathit p}} \rightarrow all)}$ $<10^{-5}$ (90$\%$ CL) for ${\mathit m}_{{{\mathit A}^{0}}}$ = 100 MeV, ${\mathit \tau}_{{{\mathit A}^{0}}}$ = $10^{-11} - 10^{-23}~$sec. Limits ranging from $2.5 \times 10^{-3}$ to $10^{-7}$ are given for ${\mathit m}_{{{\mathit A}^{0}}}$ = $25 - 136$ MeV.
18  BLUEMLEIN 1991 is a proton beam dump experiment at Serpukhov. No candidate event for ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , 2${{\mathit \gamma}}$ are found. Fig.$~$6 gives the excluded region in ${\mathit m}_{{{\mathit A}^{0}}}-\mathit x$ plane ($\mathit x~$= tan $\beta $ = $\mathit v_{2}/\mathit v_{1}$). Standard axion is excluded for $0.2$ $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $3.2$ MeV for most $\mathit x~>~$1, $0.2 - 11$ MeV for most $\mathit x~<~$1.
19  FAISSNER 1989 searched for ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in a proton beam dump experiment at SIN. No excess of events was observed over the background. A standard axion with mass 2${\mathit m}_{{{\mathit e}}}-$20 MeV is excluded. Lower limit on $\mathit f_{{{\mathit A}^{0}}}$ of $\simeq{}10^{4}$ GeV is given for ${\mathit m}_{{{\mathit A}^{0}}}$ = 2${\mathit m}_{{{\mathit e}}}-$20 MeV.
20  DEBOER 1988 reanalyze EL-NADI 1988 data and claim evidence for three distinct states with mass $\sim{}1.1$, $\sim{}2.1$, and $\sim{}9$ MeV, lifetimes $10^{-16}-10^{-15}~$s decaying to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ and note the similarity of the data with those of a cosmic-ray experiment by Bristol group (B.M.$~$Anand, Proc. of the Royal Society of London, Section A A22 183 (1953)). For a criticism see PERKINS 1989 , who suggests that the events are compatible with ${{\mathit \pi}^{0}}$ Dalitz decay. DEBOER 1989B is a reply which contests the criticism.
21  EL-NADI 1988 claim the existence of a neutral particle decaying into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ with mass $1.60$ $\pm0.59$ MeV, lifetime ($0.15$ $\pm0.01$) $ \times 10^{-14}~$s, which is produced in heavy ion interactions with emulsion nuclei at $\sim{}$4 GeV/$\mathit c$/nucleon.
22  FAISSNER 1988 is a proton beam dump experiment at SIN. They found no candidate event for ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ . A standard axion decaying to 2${{\mathit \gamma}}$ is excluded except for a region $\mathit x\simeq{}$1. Lower limit on $\mathit f_{{{\mathit A}^{0}}}$ of $-10^{3}$ GeV is given for ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.1-1$ MeV.
23  BADIER 1986 did not find long-lived ${{\mathit A}^{0}}$ in 300 GeV ${{\mathit \pi}^{-}}$ Beam Dump Experiment that decays into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in the mass range ${\mathit m}_{{{\mathit A}^{0}}}$ = (20$-$200) MeV, which excludes the ${{\mathit A}^{0}}$ decay constant $\mathit f({{\mathit A}^{0}}$) in the interval (60$-$600) GeV. See their figure 6 for excluded region on $\mathit f({{\mathit A}^{0}})-{\mathit m}_{{{\mathit A}^{0}}}$ plane.
24  BERGSMA 1985 look for ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$ , ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ . First limit above is for ${\mathit m}_{{{\mathit A}^{0}}}$ = 1 MeV; second is for 200 MeV. See their figure 4 for excluded region on $\mathit f_{{{\mathit A}^{0}}}–{\mathit m}_{{{\mathit A}^{0}}}$ plane, where $\mathit f_{{{\mathit A}^{0}}}$ is ${{\mathit A}^{0}}$ decay constant. For Peccei-Quinn PECCEI 1977 ${{\mathit A}^{0}}$, ${\mathit m}_{{{\mathit A}^{0}}}$ $<$180 keV and $\tau $ $>$0.037 s. (CL = 90$\%$). For the axion of FAISSNER 1981B at 250 keV, BERGSMA 1985 expect 15 events but observe zero.
25  FAISSNER 1983 observed 19 1-${{\mathit \gamma}}$ and 12 2-${{\mathit \gamma}}$ events where a background of 4.8 and 2.3 respectively is expected. A small-angle peak is observed even if iron wall is set in front of the decay region.
26  FAISSNER 1983B extrapolate SIN ${{\mathit \gamma}}$ signal to LAMPF ${{\mathit \nu}}$ experimental condition. Resulting 370 ${{\mathit \gamma}}$'s are not at variance with LAMPF upper limit of 450 ${{\mathit \gamma}}$'s. Derived from LAMPF limit that $\lbrack{}\mathit d{\mathit \sigma (}{{\mathit A}^{0}}{)}/\mathit d\omega $ at 90$^\circ{}\rbrack{}{}{\mathit m}_{{{\mathit A}^{0}}}/{\mathit \tau}_{{{\mathit A}^{0}}}$ $<14 \times 10^{-35}$ cm${}^{2}{}$ sr${}^{-1}{}$ MeV ${}$ms${}^{-1}$. See comment on FRANK 1983B.
27  FRANK 1983B stress the importance of LAMPF data bins with negative net signal. By statistical analysis say that LAMPF and SIN-A0 are at variance when extrapolation by phase-space model is done. They find LAMPF upper limit is 248 not 450 ${{\mathit \gamma}}$'s. See comment on FAISSNER 1983B.
28  HOFFMAN 1983 set CL = 90$\%$ limit $\mathit d\sigma{}/\mathit dt{}$ B( ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ) $<3.5 \times 10^{-32}$ cm${}^{2}$/GeV${}^{2}$ for 140 $<{\mathit m}_{{{\mathit A}^{0}}}$ $<$160 MeV. Limit assumes $\tau\mathrm {({{\mathit A}^{0}})}$ $<10^{-9}$ s.
29  FETSCHER 1982 reanalyzes SIN beam-dump data of FAISSNER 1981 . Claims no evidence for axion since 2-${{\mathit \gamma}}$ peak rate remarkably decreases if iron wall is set in front of the decay region.
30  FAISSNER 1981 see excess ${{\mathit \mu}}{{\mathit e}}$ events. Suggest axion interactions.
31  FAISSNER 1981B is SIN 590 MeV proton beam dump. Observed $14.5$ $\pm5.0$ events of 2${{\mathit \gamma}}$ decay of long-lived neutral penetrating particle with ${\mathit m}_{\mathrm {2{{\mathit \gamma}}}}{ {}\lesssim{} }$1 MeV. Axion interpretation with ${{\mathit \eta}}-{{\mathit A}^{0}}$ mixing gives ${\mathit m}_{{{\mathit A}^{0}}}$ = $250$ $\pm25$ keV, $\tau _{(2{{\mathit \gamma}})}$ = ($7.3$ $\pm3.7$) $ \times 10^{-3}~$s from above rate. See critical remarks below in comments of FETSCHER 1982 , FAISSNER 1983 , FAISSNER 1983B, FRANK 1983B, and BERGSMA 1985 . Also see in the next subsection ALEKSEEV 1982B, CAVAIGNAC 1983 , and ANANEV 1985 .
32  KIM 1981 analyzed 8 candidates for ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$ obtained by Aachen-Padova experiment at CERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetime is (0.86$\sim{}5.6){\times }10^{-3}~$s depending on models. Faissner (private communication), says axion production underestimated and mass overestimated. Correct value around 200 keV.
33  FAISSNER 1980 is SIN beam dump experiment with 590 MeV protons looking for ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ decay. Assuming ${{\mathit A}^{0}}/{{\mathit \pi}^{0}}$ = $5.5 \times 10^{-7}$, obtained decay rate limit 20/(${{\mathit A}^{0}}$ mass) MeV/s (CL = 90$\%$), which is about $10^{-7}$ below theory and interpreted as upper limit to ${\mathit m}_{{{\mathit A}^{0}}}$ $<2{}{\mathit m}_{{{\mathit e}^{-}}}$.
34  JACQUES 1980 is a BNL beam dump experiment. First limit above comes from nonobservation of excess neutral-current-type events $\lbrack{}{\mathit \sigma (}$production${)}{}{\mathit \sigma (}$interaction${)}$ $<7. \times 10^{-68}$ cm${}^{4}$, CL = 90$\%\rbrack{}$. Second limit is from nonobservation of axion decays into 2${{\mathit \gamma}}$'s or ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , and for axion mass a few MeV.
35  SOUKAS 1980 at BNL observed no excess of neutral-current-type events in beam dump.
36  BECHIS 1979 looked for the axion production in low energy electron Bremsstrahlung and the subsequent decay into either 2${{\mathit \gamma}}$ or ${{\mathit e}^{+}}{{\mathit e}^{-}}$ . No signal found. CL = 90$\%$ limits for model parameter(s) are given.
37  COTEUS 1979 is a beam dump experiment at BNL.
38  DISHAW 1979 is a calorimetric experiment and looks for low energy tail of energy distributions due to energy lost to weakly interacting particles.
39  BELLOTTI 1978 first value comes from search for ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ . Second value comes from search for ${{\mathit A}^{0}}$ $\rightarrow$ 2 ${{\mathit \gamma}}$ , assuming mass $<2{}{\mathit m}_{{{\mathit e}^{-}}}$. For any mass satisfying this, limit is above value${\times }$(mass${}^{-4}$). Third value uses data of PL 60B 401 and quotes ${\mathit \sigma (}$production${)}{}{\mathit \sigma (}$interaction${)}$ $<$ $10^{-67}$ cm${}^{4}$.
40  BOSETTI 1978B quotes ${\mathit \sigma (}$production${)}{}{\mathit \sigma (}$interaction${)}$ $<2. \times 10^{-67}$ cm${}^{4}$.
41  DONNELLY 1978 examines data from reactor neutrino experiments of REINES 1976 and GURR 1974 as well as SLAC beam dump experiment. Evidence is negative.
42  MICELMACHER 1978 finds no evidence of axion existence in reactor experiments of REINES 1976 and GURR 1974 . (See reference under DONNELLY 1978 below).
43  VYSOTSKII 1978 derived lower limit for the axion mass 25 keV from luminosity of the sun and 200 keV from red supergiants.
References:
AAD 2022J
JHEP 2203 041 Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV
TUMASYAN 2022R
JHEP 2204 087 Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $ \sqrt{s} $ = 13 TeV
TUMASYAN 2022AH
EPJ C82 290 Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton?proton collisions at $\sqrt{s}=13\,\text {TeV} $
AAD 2021N
JHEP 2103 243 Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb$^{-1}$ of Pb+Pb data with the ATLAS detector
Also
JHEP 2111 050 (errat.) Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb$^{-1}$ of Pb+Pb data with the ATLAS detector
AAD 2021K
JHEP 2102 226 Search for dark matter in association with an energetic photon in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector
AAD 2021F
PR D103 112006 Search for new phenomena in events with an energetic jet and missing transverse momentum in $pp$ collisions at $\sqrt {s}$ =13 TeV with the ATLAS detector
CARRA 2021
PR D104 092005 Constraining off-shell production of axionlike particles with Z? and WW differential cross-section measurements
AAIJ 2020AL
JHEP 2010 156 Searches for low-mass dimuon resonances
GAVELA 2020
PRL 124 051802 Nonresonant Searches for Axionlike Particles at the LHC
SIRUNYAN 2019BQ
PL B796 131 A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV
JAIN 2007
JP G34 129 Search for New Particles Decaying into Electron Pairs of Mass below 100 MeV/$\mathit c{}^{2}$
AHMAD 1997
PRL 78 618 Search for Monoenergetic Positron Emission from Heavy Ion Collisions at Coulomb Barrier Energies
LEINBERGER 1997
PL B394 16 New Results on ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Line Emission in ${}^{}\mathrm {U}{}^{}\mathrm {Ta}$ Collisions
GANZ 1996
PL B389 4 Search for ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Pairs with Narrow Sum Energy Distributions in Heavy Ion Collisions
KAMEL 1996
PL B368 291 Direct Electron Pair Production by 6.4 TeV ${}^{32}\mathrm {S}$ Emulsion Interactions
BLUEMLEIN 1992
IJMP A7 3835 Limits on the Mass of Light (Pseudo)scalar Particles from Bethe-Heitler ${{\mathit e}^{+}}{{\mathit e}^{-}}$ and ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ Pair Production in Proton-Iron Beam Dump Experiment
MEIJERDREES 1992
PRL 68 3845 Search for Weakly Interacting Neutral Bosons Produced in ${{\mathit \pi}^{-}}{{\mathit p}}$ Interactions at Rest and Decaying into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Pairs
BLUEMLEIN 1991
ZPHY C51 341 Limits on Neutral Light Scalar and Pseudoscalar Particles in Proton Beam Dump Experiment
FAISSNER 1989
ZPHY C44 557 Search for the Electron Positron Decay of an AxionLike Particle from a 590 MeV Proton Beam Dump
DEBOER 1988
PRL 61 1274 Possible Observation of Light Neutral Bosons in Nuclear Emulsions
Also
PRL 62 2644 (erratum) Erratum to DEBOER 1988 . Possible Observation of Light Neutral Bosons in Nuclear Emulsions
Also
PRL 62 2638 Comment on DEBOER 1988 “Possible Observation of Light Neutral Bosons in Nuclear Emulsions''
Also
PRL 62 2639 de Boer and van Dantzig Reply to PERKINS 1989 Comment on “Possible Observation of Light Neutral Bosons in Nuclear Emulsions” DEBOER 1988
EL-NADI 1988
PRL 61 1271 Production of a New Light Neutral Boson in High Energy Collisions
FAISSNER 1988
ZPHY C37 231 Search for Two Photon Decay of a Light Penetrating Particle from 590 MeV Proton Beam Dump
BADIER 1986
ZPHY C31 21 Mass and Lifetime Limits on New Longlived Particles in 300 ${\mathrm {GeV/}}\mathit c$ ${{\mathit \pi}^{-}}$ Interactions
BERGSMA 1985
PL 157B 458 Search for Axion Like Particle Production in 400 GeV Proton Copper Interactions
FAISSNER 1983B
PR D28 1787 Direct Comparison Between the ${{\mathit \gamma}}$ Ray Fluxes from Proton Beam Dumps at LAMPF and SIN
FAISSNER 1983
PR D28 1198 Further Evidence for the Radiative Decay of a Light, Penetrating Particle
FRANK 1983B
PR D28 1790 Reply to FAISSNER 1983B “Direct Comparison between the ${{\mathit \gamma}}$ Ray Fluxes from Proton Beam Dumps at LAMPF and SIN''
HOFFMAN 1983
PR D28 660 Measurement of ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit n}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ at 300 ${\mathrm {MeV}}/\mathit c$ and a Search for Scalar and Vector Bosons Heavier than the ${{\mathit \pi}^{0}}$
FETSCHER 1982
JP G8 L147 Comment on the Observation of the Two-Photon Decay of a Light Penetrating Particle (Phys.Lett., B103, 234. H.Faissner et al.)
FAISSNER 1981
ZPHY C10 95 Observation of Anomalous Muon Electron Pairs in a Neutrino Exposure
FAISSNER 1981B
PL 103B 234 Observation of the Two Photon Decay of a Light Penetrating Particle
KIM 1981
PL 105B 55 Axion Production in High Energy Proton Nucleon Scattering and an Estimate of its Mass
FAISSNER 1980
PL 96B 201 Limit on Axion Decay into an Electron Pair
JACQUES 1980
PR D21 1206 Search for Prompt Neutrinos and Penetrating Neutral Particles in a Beam Dump Experiment at Brookhaven
SOUKAS 1980
PRL 44 564 A Search for Prompt Neutrinos and New Penetrating Particles from 28 GeV Proton Nucleus Collisions
BECHIS 1979
PRL 42 1511 Search for Axion Production in Low Energy Electron Bremsstrahlung
COTEUS 1979
PRL 42 1438 Search for New Particles at the Alternating Gradient Synchrotron Beam Dump
DISHAW 1979
PL 85B 142 Limits on the Production of Neutrino Like Particles in Proton Nucleus Interactions from Calorimetry Measurements
ALIBRAN 1978
PL 74B 134 Observation of an Excess of Electron Neutrino, Anti-electron-neutrino Events in a Beam Dump Experiment at 400 GeV
ASRATYAN 1978B
PL 79B 497 Search for Prompt Neutrinos in 70 GeV ${{\mathit p}}{{\mathit n}}$ Collisions
BELLOTTI 1978
PL 76B 223 Experimental Limits on Axion Production and Interaction Cross Sections, and Decay Rate
BOSETTI 1978B
PL 74B 143 Observation of Prompt Neutrinos from 400 GeV Proton Nucleus Collisions
DONNELLY 1978
PR D18 1607 Do Axions Exist?
Also
PRL 37 315 Detection of ${{\overline{\mathit \nu}}_{{e}}}{{\mathit e}^{-}}$ Scattering
Also
PRL 33 179 Neutral Current Limit and Future Prospect at a Reactor
HANSL 1978D
PL 74B 139 Results of a Beam Dump Experiment at the CERN SPS Neutrino Facility
MICELMACHER 1978
LNC 21 441 Evidence Against Axions from Reactor Experiments
VYSOTSKII 1978
JETPL 27 502 Some Astrophysical Limitations on Axion Mass