Limits on Coupling of ${{\mathit \mu}}$ to ${{\mathit \nu}_{{x}}}$ as Function of ${\mathit m}_{{{\mathit \nu}_{{x}}}}$

Searches for Decays of Massive ${{\mathit \nu}}$

INSPIRE   PDGID:
S077U2D
Limits on $\vert \mathit U_{{{\mathit \mu}}\mathit x}\vert ^2$ as function of ${\mathit m}_{{{\mathit \nu}_{{x}}}}$
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<5 \times 10^{-7}$ 90 1
VAITAITIS
1999
CCFR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=0.28 GeV
$<8 \times 10^{-8}$ 90 1
VAITAITIS
1999
CCFR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=0.37 GeV
$<5 \times 10^{-7}$ 90 1
VAITAITIS
1999
CCFR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$= 0.50 GeV
$<6 \times 10^{-8}$ 90 1
VAITAITIS
1999
CCFR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$= 1.50 GeV
$<2 \times 10^{-5}$ 95 2
ABREU
1997I
DLPH ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=6 GeV
$<3 \times 10^{-5}$ 95 2
ABREU
1997I
DLPH ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=50 GeV
$<3 \times 10^{-6}$ 90
GALLAS
1995
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$ = 1 GeV
$<3 \times 10^{-5}$ 90 3
VILAIN
1995C
CHM2 ${\mathit m}_{{{\mathit \nu}_{{x}}}}$ = 2 GeV
$<6.2 \times 10^{-8}$ 95
ADEVA
1990S
L3 ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=20 GeV
$<5.1 \times 10^{-10}$ 95
ADEVA
1990S
L3 ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=40 GeV
$\text{all values ruled out}$ 95 4
BURCHAT
1990
MRK2 ${\mathit m}_{{{\mathit \nu}_{{x}}}}$ $<$ $19.6$ GeV
$<1 \times 10^{-10}$ 95 4
BURCHAT
1990
MRK2 ${\mathit m}_{{{\mathit \nu}_{{x}}}}$ = $22$ GeV
$<1 \times 10^{-11}$ 95 4
BURCHAT
1990
MRK2 ${\mathit m}_{{{\mathit \nu}_{{x}}}}$ = $41$ GeV
$\text{all values ruled out}$ 95
DECAMP
1990F
ALEP ${\mathit m}_{{{\mathit \nu}_{{x}}}}$= $25.0-42.7$ GeV
$<1 \times 10^{-13}$ 95
DECAMP
1990F
ALEP ${\mathit m}_{{{\mathit \nu}_{{x}}}}$= $42.7-45.7$ GeV
$<5 \times 10^{-3}$ 90
AKERLOF
1988
HRS ${\mathit m}_{{{\mathit \nu}_{{x}}}}=1.8$ GeV
$<2 \times 10^{-5}$ 90
AKERLOF
1988
HRS ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=4 GeV
$<3 \times 10^{-6}$ 90
AKERLOF
1988
HRS ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=6 GeV
$<1 \times 10^{-7}$ 90
BERNARDI
1988
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=200 MeV
$<3 \times 10^{-9}$ 90
BERNARDI
1988
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=300 MeV
$<4 \times 10^{-4}$ 90 5
MISHRA
1987
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}=1.5$ GeV
$<4 \times 10^{-3}$ 90 5
MISHRA
1987
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}=2.5$ GeV
$<0.009$ 90 5
MISHRA
1987
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=5 GeV
$<0.1$ 90 5
MISHRA
1987
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=10 GeV
$<8 \times 10^{-4}$ 90
BADIER
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=600 MeV
$<1.2 \times 10^{-5}$ 90
BADIER
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}=1.7$ GeV
$<3 \times 10^{-8}$ 90
BERNARDI
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=200 MeV
$<6 \times 10^{-9}$ 90
BERNARDI
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=350 MeV
$<1 \times 10^{-6}$ 90
DORENBOSCH
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=500 MeV
$<1 \times 10^{-7}$ 90
DORENBOSCH
1986
CNTR ${\mathit m}_{{{\mathit \nu}_{{x}}}}$=1600 MeV
$<0.8 \times 10^{-5}$ 90 6
COOPER-SARKAR
1985
HLBC ${\mathit m}_{{{\mathit \nu}_{{x}}}}=0.4$ GeV
$<1.0 \times 10^{-7}$ 90 6
COOPER-SARKAR
1985
HLBC ${\mathit m}_{{{\mathit \nu}_{{x}}}}=1.5$ GeV
1  VAITAITIS 1999 search for ${{\mathit L}_{{\mu}}^{0}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit X}}$ . See paper for rather complicated limit as function of ${\mathit m}_{{{\mathit \nu}_{{x}}}}$.
2  ABREU 1997I long-lived ${{\mathit \nu}_{{x}}}$ analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity except at $3.5$ GeV, where the limit is the same as at 6 GeV.
3  VILAIN 1995C is a search for the decays of heavy iso-singlet neutrinos produced by neutral current neutrino interactions. Limits were quoted for masses in the range from 0.3 to 24 GeV. The best limit is listed above.
4  BURCHAT 1990 includes the analyses reported in JUNG 1990 , ABRAMS 1989C, and WENDT 1987 .
5  See also limits on $\vert {{\mathit U}_{{3x}}}\vert $ from WENDT 1987 .
6  COOPER-SARKAR 1985 also give limits based on model-dependent assumptions for ${{\mathit \nu}_{{\tau}}}$ flux. We do not list these. Note that for this bound to be nontrivial, $\mathit x$ is not equal to 3, i.e. ${{\mathit \nu}_{{x}}}$ cannot be the dominant mass eigenstate in ${{\mathit \nu}_{{\tau}}}$ since ${\mathit m}_{{{\mathit \nu}_{{3}}}}$ $<$70 MeV (ALBRECHT 1985I). Also, of course, $\mathit x$ is not equal to 1 or 2, so a fourth generation would be required for this bound to be nontrivial.
References:
VAITAITIS 1999
PRL 83 4943 Search for Neutral Heavy Leptons in a High Energy Neutrino Beam
ABREU 1997I
ZPHY C74 57 Search for Neutral Heavy Leptons Produced in ${{\mathit Z}}$ Decays
Also
ZPHY C75 580 (errat.) Erratum: ABREU 1997I Search for Neutral Heavy Leptons Produced in ${{\mathit Z}}$ Decays
GALLAS 1995
PR D52 6 Search for Neutral Weakly Interacting Massive Particles in the Fermilab Tevatron Wide Band Neutrino Beam
VILAIN 1995C
PL B351 387 Search for Heavy Isosinglet Neutrinos
Also
PL B343 453 Search for Heavy Isosinglet Neutrinos
ADEVA 1990S
PL B251 321 A Search for Heavy Charged and Neutral Leptons from ${{\mathit Z}^{0}}$ Decays
BURCHAT 1990
PR D41 3542 A Search for Decays of the ${{\mathit Z}^{0}}$ to Unstable Neutral Leptons with Mass between 2.5 and 22 GeV
DECAMP 1990F
PL B236 511 A Search for New Quarks and Leptons from ${{\mathit Z}^{0}}$ Decay
AKERLOF 1988
PR D37 577 Experimental Limits on Massive Neutrinos from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Annihilation at 29 GeV
BERNARDI 1988
PL B203 332 Further Limit on Heavy Neutrino Coupling
MISHRA 1987
PRL 59 1397 Search for Neutral Heavy Leptons from ${{\mathit \nu}}$ Nucleus Scattering
BADIER 1986
ZPHY C31 21 Mass and Lifetime Limits on New Longlived Particles in 300 ${\mathrm {GeV/}}\mathit c$ ${{\mathit \pi}^{-}}$ Interactions
BERNARDI 1986
PL 166B 479 Search for Neutrino Decay
DORENBOSCH 1986
PL 166B 473 A Search for Decays of Heavy Neutrinos in the Mass Range of 0.5 $−$ 2.8 GeV
COOPER-SARKAR 1985
PL 160B 207 Search for Heavy Neutrino Decays in the BEBC Beam Dump Experiment