${{\widetilde{\mathit \chi}}_{{1}}^{0}}-{{\mathit p}}$ elastic cross section

Experimental results on the ${{\widetilde{\mathit \chi}}_{{1}}^{0}}-{{\mathit p}}$ elastic cross section are evaluated at ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{1}}^{0}}}$=100 GeV. The experimental results on the cross section are often mass dependent. Therefore, the mass and cross section results are also given where the limit is strongest, when appropriate. Results are quoted separately for spin-dependent interactions (based on an effective 4-Fermi Lagrangian of the form ${{\overline{\mathit \chi}}}\gamma {}^{\mu }\gamma {}^{5}\chi {{\overline{\mathit q}}}\gamma _{\mu }\gamma {}^{5}{{\mathit q}}$) and spin-independent interactions (${{\overline{\mathit \chi}}}\chi $ ${{\overline{\mathit q}}}{{\mathit q}}$ ). For calculational details see GRIEST 1988B, ELLIS 1988D, BARBIERI 1989C, DREES 1993B, ARNOWITT 1996 , BERGSTROM 1996 , and BAER 1997 in addition to the theory papers listed in the Tables. For a description of the theoretical assumptions and experimental techniques underlying most of the listed papers, see the review on “Dark matter” in this “Review of Particle Physics,” and references therein. Most of the following papers use galactic halo and nuclear interaction assumptions from (LEWIN 1996 ).

Spin-dependent interactions

INSPIRE   PDGID:
S046DM1
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<2 \times 10^{-4}$ 90 1
HUANG
2022
PNDX ${}^{}\mathrm {Xe}$
$<4 \times 10^{-5}$ 90 2
AMOLE
2019
PICO C$_{3}F_{8}$
$<5 \times 10^{-4}$ 90 3
APRILE
2019A
XE1T ${}^{}\mathrm {Xe}$
$<8 \times 10^{-4}$ 90 4
AKERIB
2017A
LUX ${}^{}\mathrm {Xe}$
$<0.28$ 90 5
BATTAT
2017
DRFT CS$_{2}$; CF$_{4}$
$<0.027$ 90 6
BEHNKE
2017
PICA C$_{4}F_{10}$
$<5 \times 10^{-4}$ 90 7
AMOLE
2016
PICO CF$_{3}$I
$<6.8 \times 10^{-3}$ 90 8
APRILE
2016B
X100 ${}^{}\mathrm {Xe}$
$<6.3 \times 10^{-3}$ 90 9
FELIZARDO
2014
SMPL C$_{2}$ClF$_{5}$
$<0.01$ 90 10
AKIMOV
2012
ZEP3 ${}^{}\mathrm {Xe}$
$<7 \times 10^{-3}$ 11
BEHNKE
2012
COUP CF$_{3}$I
$<8.5 \times 10^{-3}$ 12
FELIZARDO
2012
SMPL C$_{2}$ClF$_{5}$
$<0.016$ 90 13
KIM
2012
KIMS CsI
$5 \times 10^{-10} \text{ to }\text{E-5}$ 95 14
BUCHMUELLER
2011B
THEO
$<1$ 90 15
ANGLE
2008A
XE10 ${}^{}\mathrm {Xe}$
$<0.055$ 16
BEDNYAKOV
2008
HDMS ${}^{}\mathrm {Ge}$
$<0.33$ 90 17
BEHNKE
2008
COUP CF$_{3}$I
$<5$ 18
AKERIB
2006
CDMS Ge
$<2$ 19
SHIMIZU
2006A
CNTR CaF$_{2}$
$<0.4$ 20
ALNER
2005
NAIA NaI Spin Dep.
$<2$ 21
BARNABE-HEIDE..
2005
PICA C
$2 \times 10^{-11} \text{ to 1 }\times 10^{-4}$ 22
ELLIS
2004
THEO ${{\mathit \mu}}$ $>$ 0
$<0.8$ 23
AHMED
2003
NAIA NaI Spin Dep.
$<40$ 24
TAKEDA
2003
BOLO NaF Spin Dep.
$<10$ 25
ANGLOHER
2002
CRES Saphire
$8 \times 10^{-7} \text{ to 2 }\times 10^{-5}$ 26
ELLIS
2001C
THEO tan $\beta {}\leq{}$10
$<3.8$ 27
BERNABEI
2000D
DAMA Xe
$<0.8$
SPOONER
2000
UKDM NaI
$<4.8$ 28
BELLI
1999C
DAMA ${}^{}\mathrm {F}$
$<100$ 29
OOTANI
1999
BOLO ${}^{}\mathrm {Li}{}^{}\mathrm {F}$
$<0.6$
BERNABEI
1998C
DAMA Xe
$<5$ 28
BERNABEI
1997
DAMA F
1  The strongest limit is $<$ $1.7 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 40 GeV. This updates FU 2017 and XIA 2019A.
2  The strongest limit is $<$ $2.5 \times 10^{-5}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 25 GeV. This updates AMOLE 2017 .
3  The strongest limit is $<$ $2 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 30 GeV. For scatterings on neutrons, the strongest limit is $<$ $6.3 \times 10^{-6}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 30 GeV.
4  The strongest limit is $5 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV. The limit for scattering on neutrons is $3 \times 10^{-5}$ pb at 100 GeV and is $1.6 \times 10^{-5}$ pb at 35 GeV. This updates AKERIB 2016A.
5  Directional recoil detector. This updates DAW 2012 .
6  This result updates ARCHAMBAULT 2012 . The strongest limit is 0.013 pb at ${\mathit m}_{{{\mathit \chi}}}$ = 20 GeV.
7  The strongest limit is $5 \times 10^{-4}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 80 GeV.
8  The strongest limit is $5.2 \times 10^{-3}$ pb at 50 GeV. The limit for scattering on neutrons is $2.8 \times 10^{-4}$ pb at 100 GeV and the strongest limit is $2.0 \times 10^{-4}$ pb at 50 GeV. This updates APRILE 2013 .
9  The strongest limit is 0.0043 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV. FELIZARDO 2014 also presents limits for the scattering on neutrons. At ${\mathit m}_{{{\mathit \chi}}}$ = 100 GeV, the upper limit is 0.13 pb and the strongest limit is 0.066 pb at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV.
10  This result updates LEBEDENKO 2009A. The strongest limit is $8 \times 10^{-3}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 50 GeV. Limit applies to the neutralino neutron elastic cross section.
11  The strongest limit is $6 \times 10^{-3}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 60 GeV.
12  The strongest limit is $5.7 \times 10^{-3}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV.
13  This result updates LEE 2007A. The strongest limit is at ${\mathit m}_{{{\mathit \chi}}}$ = 80 GeV.
14  Predictions for the spin-dependent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
15  The strongest limit is 0.6 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$= 30 GeV. The limit for scattering on neutrons is 0.01 pb at ${\mathit m}_{{{\mathit \chi}}}$= 100 GeV, and the strongest limit is 0.0045 pb at ${\mathit m}_{{{\mathit \chi}}}$= 30$~$GeV.
16  Limit applies to neutron elastic cross section.
17  The strongest upper limit is 0.25 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$40 GeV.
18  The strongest upper limit is 4 pb and occurs at ${{\mathit m}_{{\chi}}}$ $\simeq{}$ 60 GeV. The limit on the neutron spin-dependent elastic cross section is 0.07 pb. This latter limit is improved in AHMED 2009 , where a limit of 0.02 pb is obtained at ${\mathit m}_{{{\mathit \chi}}}$ = 100 GeV. The strongest limit in AHMED 2009 is 0.018 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ = 60 GeV.
19  The strongest upper limit is 1.2 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 40 GeV. The limit on the neutron spin-dependent cross section is 35 pb.
20  The strongest upper limit is 0.35 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 60 GeV.
21  The strongest upper limit is 1.2 pb and occurs ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 30 GeV.
22  ELLIS 2004 calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses. In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes $2 \times 10^{-4}$, see ELLIS 2003E.
23  The strongest upper limit is 0.75 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\approx{}$70 GeV.
24  The strongest upper limit is 30 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\approx{}$ 20~GeV.
25  The strongest upper limit is 8 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
26  ELLIS 2001C calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. In models with nonuniversal Higgs masses, the upper limit to the cross section is $6 \times 10^{-4}$.
27  The strongest upper limit is 3 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$60 GeV. The limits are for inelastic scattering ${{\mathit X}^{0}}$ ${+}$ ${}^{129}\mathrm {Xe}$ $\rightarrow$ ${{\mathit X}^{0}}{+}$ ${}^{129}\mathrm {Xe}^{*}$ (39.58 keV).
28  The strongest upper limit is 4.4 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$60 GeV.
29  The strongest upper limit is about 35 pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$15 GeV.
References:
HUANG 2022
PL B834 137487 Constraints on the axial-vector and pseudo-scalar mediated WIMP-nucleus interactions from PandaX-4T experiment
AMOLE 2019
PR D100 022001 Dark Matter Search Results from the Complete Exposure of the PICO-60 C$_3$F$_8$ Bubble Chamber
APRILE 2019A
PRL 122 141301 Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T
AKERIB 2017A
PRL 118 251302 Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure
BATTAT 2017
ASP 91 65 Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector
BEHNKE 2017
ASP 90 85 Final Results of the PICASSO Dark Matter Search Experiment
AMOLE 2016
PR D93 052014 Dark Matter Search Results from the PICO-60 CF$_{3}$I Bubble Chamber
APRILE 2016B
PR D94 122001 XENON100 Dark Matter Results from a Combination of 477 Live Days
FELIZARDO 2014
PR D89 072013 The SIMPLE Phase II Dark Matter Search
AKIMOV 2012
PL B709 14 WIMP-Nucleon Cross-Section Results from the Second Science Run of ZEPLIN-II
BEHNKE 2012
PR D86 052001 First Dark Matter Search Results from a 4-kg CF$_{3}$I Bubble Chamber Operated in a Deep Underground Site
Also
PR D90 079902 (errat.) Erratum to BEHNKE 2012 : First Dark Matter Search Results from a 4-kg CF3I Bubble Chamber Operated in a Deep Underground Site
FELIZARDO 2012
PRL 108 201302 Final Analysis and Results of the Phase II SIMPLE Dark Matter Search
KIM 2012
PRL 108 181301 New Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors
BUCHMUELLER 2011B
EPJ C71 1722 Supersymmetry and Dark Matter in Light of LHC 2010 and XENON100 Data
ANGLE 2008A
PRL 101 091301 Limits on Spin-Dependent WIMP-Nucleon Cross Sections from the XENON10 Experiment
BEDNYAKOV 2008
PAN 71 111 New Constraints on Spin-Dependent WIMP-Neutron Interactions from HDMS with Natural ${}^{}\mathrm {Ge}$ and ${}^{73}\mathrm {Ge}$
BEHNKE 2008
SCI 319 933 Improved Spin-Dependent WIMP Limits from a Bubble Chamber
AKERIB 2006
PR D73 011102 Limits on Spin-dependent WIMP $−$ Nucleon Interactions from the Cryogenic Dark Matter Search
SHIMIZU 2006A
PL B633 195 Dark Matter Search Experiment with CaF$_{2}$(Eu) scintillator at Kamioka Observatory
ALNER 2005
PL B616 17 Limits on WIMP Cross-Sections from the NAIAD Experiment at the Boulby Underground Laboratory
BARNABE-HEIDER 2005
PL B624 186 Improved Spin-Dependent Limits from the PICASSO Dark Matter Search Experiment
ELLIS 2004
PR D69 015005 High Energy Constraints on the Direct Detection of MSSM Neutralinos
AHMED 2003
ASP 19 691 The NAIAD Experiment for WIMP Searches at Boulby Mine and Recent Result
TAKEDA 2003
PL B572 145 Limits on the WIMP$−$Nucleon Coupling Coefficients from Dark Matter Search Experiment with NaF Bolometer
ANGLOHER 2002
ASP 18 43 Limits on WIMP Dark Matter using SAPPHIRE Cryogenic Detectors
ELLIS 2001C
PR D63 065016 Exploration of Elastic Scattering Rates for Supersymmetric Dark Matter
BERNABEI 2000D
NJP 2 15 Improved Limits on WIMP ${}^{129}\mathrm {Xe}$ Inelastic Scattering
SPOONER 2000
PL B473 330 NaI Dark Matter Limits and the NAIAD Array $−$ a Detector with Improved Sensitivity to WIMPs using Unencapsulated NaI
BELLI 1999C
NP B563 97 New Limits on Spin Dependent Coupled WIMPs and on 2$\beta $ Processes in ${}^{40}\mathrm {Ca}$ and ${}^{46}\mathrm {Ca}$ by using Low Radioactive CaF-2 (Eu) Crystal Scintillators
OOTANI 1999
PL B461 371 First Results from Dark Matter Search Experiment in the Nokogiriyama Underground Cell
BERNABEI 1998C
PL B436 379 New Limits on Particle Dark Matter Search with a Liquid Xenon Target Scintillator
BERNABEI 1997
ASP 7 73 Improved Limits on WIMP-${}^{19}\mathrm {F}$ Elastic Scattering and First Limit on the 2EC2${{\mathit \nu}}{}^{40}\mathrm {Ca}$ Decay by using a Low Radioactive CaF$_{2}$(Eu) Scintillator