Mass Limits on $\mathit M_{\mathit TT}$

INSPIRE   PDGID:
S071GEX
This section includes limits on the cut-off mass scale, $\mathit M_{\mathit TT}$, of dimension-8 operators from KK graviton exchange in models of large extra dimensions. Ambiguities in the UV-divergent summation are absorbed into the parameter $\lambda $, which is taken to be $\lambda $ = $\pm{}$1 in the following analyses. Bounds for $\lambda $ = $-1$ are shown in parenthesis after the bound for $\lambda $ = $+1$, if appropriate. Different papers use slightly different definitions of the mass scale. The definition used here is related to another popular convention by $\mathit M{}^{4}_{TT}$ = (2/${{\mathit \pi}}$) $\Lambda {}^{4}_{T}$, as discussed in the above Review on “Extra Dimensions.”

VALUE (TeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{> 9.02}$ 95 1
SIRUNYAN
2018DD
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ dijet, ang. distrib.
$ \bf{>20.6} $ $\bf{(>15.7)}$ 95 2
GIUDICE
2003
RVUE Dim-6 operators
• • We do not use the following data for averages, fits, limits, etc. • •
$> 6.7$ 95 3
SIRUNYAN
2021N
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 6.9$ 95 4
SIRUNYAN
2019AC
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$ > 7.0 $ ($>$5.6) 95 5
SIRUNYAN
2018DU
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 6.5$ 95 6
AABOUD
2017AP
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$> 3.8$ 95 7
AAD
2014BE
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$> 3.2$ 95 8
AAD
2013E
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
9
BAAK
2012
RVUE Electroweak
$ > 0.90 $ ($>$0.92) 95 10
AARON
2011C
H1 ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$
$> 1.48$ 95 11
ABAZOV
2009AE
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ dijet, ang. distrib.
$> 1.45$ 95 12
ABAZOV
2009D
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$ > 1.1 $ ($>$ 1.0) 95 13
SCHAEL
2007A
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$ > 0.898 $ ($>$ 0.998) 95 14
ABDALLAH
2006C
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
$ > 0.853 $ ($>$ 0.939) 95 15
GERDES
2006
${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$ > 0.96 $ ($>0.93$) 95 16
ABAZOV
2005V
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$ >0.78 $ ($>0.79$) 95 17
CHEKANOV
2004B
ZEUS ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$
$ >0.805 $ ($>0.956$) 95 18
ABBIENDI
2003D
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$ >0.7 $ ($>0.7$) 95 19
ACHARD
2003D
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$
$ >0.82 $ ($>0.78$) 95 20
ADLOFF
2003
H1 ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$
$ >1.28 $ ($>1.25$) 95 21
GIUDICE
2003
RVUE
$ >0.80 $ ($>0.85$) 95 22
HEISTER
2003C
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$ >0.84 $ ($>0.99$) 95 23
ACHARD
2002D
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$ >1.2 $ ($>1.1$) 95 24
ABBOTT
2001
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$
$ >0.60 $ ($>0.63$) 95 25
ABBIENDI
2000R
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
$ >0.63 $ ($>0.50$) 95 25
ABBIENDI
2000R
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
$ >0.68 $ ($>0.61$) 95 25
ABBIENDI
2000R
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
26
ABREU
2000A
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$ >0.680 $ ($>0.542$) 95 27
ABREU
2000S
DLPH ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$
$\text{>15 - 28}$ 99.7 28
CHANG
2000B
RVUE Electroweak
$>0.98$ 95 29
CHEUNG
2000
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$\text{>0.29 - 0.38}$ 95 30
GRAESSER
2000
RVUE ($\mathit g–2)_{\mu }$
$\text{>0.50 - 1.1}$ 95 31
HAN
2000
RVUE Electroweak
$ >2.0 $ ($>2.0$) 95 32
MATHEWS
2000
RVUE ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$
$ >1.0 $ ($>1.1$) 95 33
MELE
2000
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit V}}{{\mathit V}}$
34
ABBIENDI
1999P
OPAL
35
ACCIARRI
1999M
L3
36
ACCIARRI
1999S
L3
$ >1.412 $ ($>1.077$) 95 37
BOURILKOV
1999
${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
1  SIRUNYAN 2018DD use dijet angular distributions in 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to place a lower bound on ${{\mathit \Lambda}_{{T}}}$, here converted to ${{\mathit M}_{{TT}}}$. This updates the results of SIRUNYAN 2017F.
2  GIUDICE 2003 place bounds on $\Lambda _{6}$, the coefficient of the gravitationally-induced dimension-6 operator (2$\pi \lambda /\Lambda {}^{2}_{6})(\sum{{\overline{\mathit f}}}\gamma _{\mu }\gamma {}^{5}\mathit f)(\sum{{\overline{\mathit f}}}\gamma {}^{\mu }\gamma {}^{5}\mathit f$), using data from a variety of experiments. Results are quoted for $\lambda =\pm1$ and are independent of $\delta $.
3  SIRUNYAN 2021N use 137 (140) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the dielectron (dimuon) channels to place a lower limit on ${{\mathit \Lambda}_{{T}}}$, here converted to ${{\mathit M}_{{TT}}}$. Bounds on individual channels can be found in their Table 7.
4  SIRUNYAN 2019AC use 35.9 (36.3) fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the dielectron (dimuon) channels to place a lower limit on ${{\mathit \Lambda}_{{T}}}$, here converted to ${{\mathit M}_{{TT}}}$. The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table 2. This updates the results in KHACHATRYAN 2015AE.
5  SIRUNYAN 2018DU use 35.9 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to place lower limits on ${{\mathit M}_{{TT}}}$ (equivalent to their ${{\mathit M}_{{S}}}$). This updates the results of CHATRCHYAN 2012R.
6  AABOUD 2017AP use 36.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV to place lower limits on ${{\mathit M}_{{TT}}}$ (equivalent to their ${{\mathit M}_{{S}}}$). This updates the results of AAD 2013AS.
7  AAD 2014BE use 20 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV in the dilepton channel to place lower limits on ${{\mathit M}_{{TT}}}$ (equivalent to their ${{\mathit M}_{{S}}}$).
8  AAD 2013E use 4.9 and 5.0 fb${}^{-1}$ of data from ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV in the dielectron and dimuon channels, respectively, to place lower limits on ${{\mathit M}_{{TT}}}$ (equivalent to their ${{\mathit M}_{{S}}}$). The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table VIII.
9  BAAK 2012 use electroweak precision observables to place bounds on the ratio ${{\mathit \Lambda}_{{T}}}/{{\mathit M}_{{D}}}$ as a function of ${{\mathit M}_{{D}}}$. See their Fig. 22 for constraints with a Higgs mass of 120 GeV.
10  AARON 2011C search for deviations in the differential cross section of ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$ in 446 pb${}^{-1}$ of data taken at $\sqrt {s }$ = 301 and 319 GeV to place a bound on ${{\mathit M}_{{TT}}}$.
11  ABAZOV 2009AE use dijet angular distributions in 0.7 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place lower bounds on $\Lambda _{T}$ (equivalent to their $\mathit M_{S}$), here converted to $\mathit M_{TT}$.
12  ABAZOV 2009D use 1.05 fb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to place lower bounds on ${{\mathit \Lambda}_{{T}}}$ (equivalent to their ${{\mathit M}_{{s}}}$), here converted to ${{\mathit M}_{{TT}}}$.
13  SCHAEL 2007A use ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = $189 - 209$ GeV to place lower limits on ${{\mathit \Lambda}_{{T}}}$, here converted to limits on ${{\mathit M}_{{TT}}}$.
14  ABDALLAH 2006C use ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }\sim{}130 - 207$ GeV to place lower limits on ${{\mathit M}_{{TT}}}$, which is equivalent to their definition of ${{\mathit M}_{{s}}}$. Bound shown includes all possible final state leptons, ${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$, ${{\mathit \tau}}$. Bounds on individual leptonic final states can be found in their Table 31.
15  GERDES 2006 use 100 to 110 pb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.8 TeV, as recorded by the CDF Collaboration during Run I of the Tevatron. Bound shown includes a ${{\mathit K}}$-factor of 1.3. Bounds on individual ${{\mathit e}^{+}}{{\mathit e}^{-}}$ and ${{\mathit \gamma}}{{\mathit \gamma}}$ final states are found in their Table I.
16  ABAZOV 2005V use 246 pb${}^{-1}$ of data from ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV to search for deviations in the differential cross section to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ from graviton exchange.
17  CHEKANOV 2004B search for deviations in the differential cross section of ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$ with 130~$\mathit pb{}^{-1}$ of combined data and ${{\mathit Q}^{2}}$ values up to 40,000~GeV${}^{2}$ to place a bound on ${{\mathit M}}_{TT}$.
18  ABBIENDI 2003D use ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }=181 - 209$ GeV to place bounds on the ultraviolet scale $\mathit M_{\mathit TT}$, which is equivalent to their definition of $\mathit M_{\mathit s}$.
19  ACHARD 2003D look for deviations in the cross section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$ from $\sqrt {\mathit s }$ = $200 - 209$ GeV to place a bound on $\mathit M_{\mathit TT}$.
20  ADLOFF 2003 search for deviations in the differential cross section of ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit X}}$ at $\sqrt {\mathit s }$=301 and 319 GeV to place bounds on $\mathit M_{\mathit TT}$.
21  GIUDICE 2003 review existing experimental bounds on $\mathit M_{\mathit TT}$ and derive a combined limit.
22  HEISTER 2003C use ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$= $189 - 209$ GeV to place bounds on the scale of dim-8 gravitational interactions. Their $\mathit M{}^{\pm{}}_{\mathit s}$ is equivalent to our $\mathit M_{\mathit TT}$ with $\lambda =\pm1$.
23  ACHARD 2002 search for $\mathit s$-channel graviton exchange effects in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ at $\mathit E_{{\mathrm {cm}}}$ = $192 - 209$ GeV.
24  ABBOTT 2001 search for variations in differential cross sections to ${{\mathit e}^{+}}{{\mathit e}^{-}}$ and ${{\mathit \gamma}}{{\mathit \gamma}}$ final states at the Tevatron.
25  ABBIENDI 2000R uses ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$= 189 GeV.
26  ABREU 2000A search for $\mathit s$-channel graviton exchange effects in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ at $\mathit E_{{\mathrm {cm}}}$= $189 - 202$ GeV.
27  ABREU 2000S uses ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$=183 and 189 GeV. Bounds on ${{\mathit \mu}}$ and ${{\mathit \tau}}$ individual final states given in paper.
28  CHANG 2000B derive 3$\sigma $ limit on $\mathit M_{\mathit TT}$ of (28,19,15) TeV for $\delta $=(2,4,6) respectively assuming the presence of a torsional coupling in the gravitational action. Highly model dependent.
29  CHEUNG 2000 obtains limits from anomalous diphoton production at OPAL due to graviton exchange. Original limit for $\delta $=4. However, unknown $\mathit UV$ theory renders $\delta ~$dependence unreliable. Original paper works in HLZ convention.
30  GRAESSER 2000 obtains a bound from graviton contributions to $\mathit g–$2 of the muon through loops of 0.29 TeV for $\delta $=2 and 0.38 TeV for $\delta $=4,6. Limits scale as $\lambda {}^{1/2}$. However calculational scheme not well-defined without specification of high-scale theory. See the ``Extra Dimensions Review.''
31  HAN 2000 calculates corrections to gauge boson self-energies from KK graviton loops and constrain them using $\mathit S$ and $\mathit T$. Bounds on $\mathit M_{\mathit TT}$ range from 0.5 TeV ($\delta $=6) to 1.1 TeV ($\delta $=2); see text. Limits have strong dependence, $\lambda {}^{\delta +2}$, on unknown $\lambda $ coefficient.
32  MATHEWS 2000 search for evidence of graviton exchange in CDF and ${D0}$ dijet production data. See their Table$~$2 for slightly stronger $\delta $-dependent bounds. Limits expressed in terms of ${{\widetilde{\mathit M}}}{}^{4}_{\mathit S}$ = $\mathit M{}^{4}_{\mathit TT}$/8.
33  MELE 2000 obtains bound from KK graviton contributions to ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit V}}{{\mathit V}}$ (${{\mathit V}}={{\mathit \gamma}},{{\mathit W}},{{\mathit Z}}$) at LEP. Authors use Hewett conventions.
34  ABBIENDI 1999P search for $\mathit s$-channel graviton exchange effects in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ at $\mathit E_{{\mathrm {cm}}}$=189 GeV. The limits $\mathit G_{+}>660$ GeV and $\mathit G_{−}>634$ GeV are obtained from combined $\mathit E_{{\mathrm {cm}}}$=183 and 189 GeV data, where $\mathit G_{\pm{}}$ is a scale related to the fundamental gravity scale.
35  ACCIARRI 1999M search for the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit G}}$ and $\mathit s$-channel graviton exchange effects in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit W}^{+}}{{\mathit W}^{-}}$ , ${{\mathit Z}}{{\mathit Z}}$ , ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ , ${{\mathit q}}{{\overline{\mathit q}}}$ at $\mathit E_{{\mathrm {cm}}}$=183 GeV. Limits on the gravity scale are listed in their Tables$~$1 and 2.
36  search for the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit G}}$ and $\mathit s$-channel graviton exchange effects in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit W}^{+}}{{\mathit W}^{-}}$ , ${{\mathit Z}}{{\mathit Z}}$ , ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ , ${{\mathit q}}{{\overline{\mathit q}}}$ at $\mathit E_{{\mathrm {cm}}}$=189 GeV. Limits on the gravity scale are listed in their Tables$~$1 and 2.
37  BOURILKOV 1999 performs global analysis of LEP data on ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$=183 and 189 GeV. Bound is on $\Lambda _{\mathit T}$.
References:
SIRUNYAN 2021N
JHEP 2107 208 Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $ \sqrt{s} $ = 13 TeV
SIRUNYAN 2019AC
JHEP 1904 114 Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2018DU
PR D98 092001 Search for physics beyond the standard model in high-mass diphoton events from proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2018DD
EPJ C78 789 Search for new physics in dijet angular distributions using proton?proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter and other models
AABOUD 2017AP
PL B775 105 Search for New Phenomena in High-Mass Diphoton Final States using 37 ${\mathrm {fb}}{}^{-1}$ of Proton-Proton Collisions Collected at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AAD 2014BE
EPJ C74 3134 Search for Contact Interactions and Large Extra Dimensions in the Dilepton Channel using Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2013E
PR D87 015010 Search for Contact Interactions and Large Extra Dimensions in Dilepton Events from ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
BAAK 2012
EPJ C72 2003 Updated Status of the Global Electroweak Fit and Constraints on New Physics
AARON 2011C
PL B705 52 Search for Contact Interactions in ${{\mathit e}^{\pm}}{{\mathit p}}$ Collisions at HERA
ABAZOV 2009D
PRL 102 051601 Search for Large Extra Spatial Dimensions in the Dielectron and Diphoton Channels in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2009AE
PRL 103 191803 Measurement of Dijet Angular Distributions at $\sqrt {s }$=1.96 TeV and Searches for Quark Compositeness and Extra Spatial Dimensions
SCHAEL 2007A
EPJ C49 411 Fermion Pair Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $189 - 209$ GeV and Constraints on Physics Beyond the Standard Model
ABDALLAH 2006C
EPJ C45 589 Measurement and Interpretation of Fermion-Pair Production at LEP Energies above the ${{\mathit Z}}$ Resonance
GERDES 2006
PR D73 112008 Search for Large Extra Dimensions using Dielectron and Diphoton Events in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABAZOV 2005V
PRL 95 161602 Search for Large Extra Spatial Dimensions in Dimuon Production with the ${D0}$ Detector
CHEKANOV 2004B
PL B591 23 Search for Contact Interactions, Large Extra Dimensions and Finite Quark Radius in ${{\mathit e}}{{\mathit p}}$ Collisions at HERA
ABBIENDI 2003D
EPJ C26 331 Multiphoton Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = 181 to 209 GeV
ACHARD 2003D
PL B572 133 ${{\mathit Z}}$ Boson Pair Production at LEP
ADLOFF 2003
PL B568 35 Search for New Physics in ${{\mathit e}^{\pm}}{{\mathit q}}$ Contact Interactions at HERA
GIUDICE 2003
NP B663 377 Constraints on Extra Dimensional Theories from Virtual Graviton Exchange
HEISTER 2003C
EPJ C28 1 Single Photon and Multiphoton Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ up to 209 GeV
ACHARD 2002D
PL B531 28 Study of Multiphoton Final States and Tests of QED in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ up to 209 GeV
ABBOTT 2001
PRL 86 1156 Search for Large Extra Dimensions in Dielectron and Diphoton Production
ABBIENDI 2000R
EPJ C13 553 Tests of the Standard Model and Constraints on New Physics from Measurements of Fermion Pair Production at 189 GeV at LEP
ABREU 2000S
PL B485 45 Measurement and Interpretation of Fermion-Pair Production at LEP Energies of 183 and 189 GeV
ABREU 2000A
PL B491 67 Determination of the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$( ${{\mathit \gamma}}$) Cross Section at $\mathit E_{{\mathrm {cm}}}$ Ranging from 189 to 202 GeV
CHANG 2000B
PRL 85 3765 Universal Torsion Induced Interaction from Large Extra Dimensions
CHEUNG 2000
PR D61 015005 Diphoton Signals for Low Scale Gravity in Extra Dimensions
GRAESSER 2000
PR D61 074019 Extra Dimensions and the Muon Anomalous Magnetic Moment
HAN 2000
PR D62 125018 Oblique Parameter Constraints on Large Extra Dimensions
MATHEWS 2000
JHEP 0007 008 Testing TeV Scale Quantum Gravity using Dijet Production at the Tevatron
MELE 2000
PR D61 117901 Study of Extra Space Dimensions in Vector Boson Pair Production at LEP
ABBIENDI 1999P
PL B465 303 Multiphoton Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = 189 GeV
ACCIARRI 1999S
PL B470 281 Search for Extra Dimensions in Boson and Fermion Pair Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Interactions at LEP
ACCIARRI 1999M
PL B464 135 Search for Low Scale Gravity Effects in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at LEP
BOURILKOV 1999
JHEP 9908 006 Global Analysis of Bhabha Scattering at LEP-2 and Limits on Low Scale Gravity Models