${\mathit {\mathit c}}$-QUARK MASS

INSPIRE   PDGID:
Q004M
The ${{\mathit c}}$-quark mass corresponds to the “running” mass ${\mathit m}_{{{\mathit c}}}$ ($\mu $ = ${\mathit m}_{{{\mathit c}}}$) in the $\overline{\rm{}MS}$ scheme. We have converted masses in other schemes to the $\overline{\rm{}MS}$ scheme using two-loop QCD perturbation theory with ${{\mathit \alpha}_{{s}}}({{\mathit \mu}}={\mathit m}_{{{\mathit c}}}$) = $0.38$ $\pm0.03$. The value $1.27$ $\pm0.02$ (GeV) for the $\overline{\rm{}MS}$ mass corresponds to $1.67$ $\pm0.07$ GeV for the pole mass (see the “Note on Quark Masses'').
VALUE (GeV) DOCUMENT ID TECN
$\bf{ 1.27 \pm0.02}$ OUR EVALUATION  See the ideogram below.
$1.316$ $\pm0.022$ ${}^{+0.019}_{-0.010}$ 1
ALEXANDROU
2021
LATT
$1.296$ $\pm0.019$ 2
HEITGER
2021
LATT
$1.2723$ $\pm0.0078$ 3
HATTON
2020
LATT
$1.266$ $\pm0.006$ 4
NARISON
2020
THEO
$1.290$ ${}^{+0.077}_{-0.053}$ 5
ABRAMOWICZ
2018
HERA
$1.273$ $\pm0.010$ 6
BAZAVOV
2018
LATT
$1.2737$ $\pm0.0077$ 7
LYTLE
2018
LATT
$1.223$ $\pm0.033$ 8
PESET
2018
THEO
$1.279$ $\pm0.008$ 9
CHETYRKIN
2017
THEO
$1.272$ $\pm0.008$ 10
ERLER
2017
THEO
$1.246$ $\pm0.023$ 11
KIYO
2016
THEO
$1.288$ $\pm0.020$ 12
DEHNADI
2015
THEO
$1.348$ $\pm0.046$ 13
CARRASCO
2014
LATT
$1.24$ $\pm0.03$ ${}^{+0.03}_{-0.07}$ 14
ALEKHIN
2013
THEO
$1.159$ $\pm0.075$ 15
SAMOYLOV
2013
NOMD
$1.278$ $\pm0.009$ 16
BODENSTEIN
2011
THEO
$1.28$ ${}^{+0.07}_{-0.06}$ 17
LASCHKA
2011
THEO
$1.196$ $\pm0.059$ $\pm0.050$ 18
AUBERT
2010A
BABR
$1.25$ $\pm0.04$ 19
SIGNER
2009
THEO
• • We do not use the following data for averages, fits, limits, etc. • •
$1.263$ $\pm0.014$ 20
NARISON
2018A
THEO
$1.264$ $\pm0.006$ 21
NARISON
2018B
THEO
$1.335$ $\pm0.043$ ${}^{+0.040}_{-0.011}$ 22
BERTONE
2016
THEO
$1.2715$ $\pm0.0095$ 23
CHAKRABORTY
2015
LATT
$1.26$ $\pm0.05$ $\pm0.04$ 24
ABRAMOWICZ
2013C
COMB
$1.282$ $\pm0.011$ $\pm0.022$ 25
DEHNADI
2013
THEO
$1.286$ $\pm0.066$ 26
NARISON
2013
THEO
$1.36$ $\pm0.04$ $\pm0.10$ 27
ALEKHIN
2012
THEO
$1.261$ $\pm0.016$ 28
NARISON
2012A
THEO
$1.01$ $\pm0.09$ $\pm0.03$ 29
ALEKHIN
2011
THEO
$1.28$ $\pm0.04$ 30
BLOSSIER
2010
LATT
$1.299$ $\pm0.026$ 31
BODENSTEIN
2010
THEO
$1.273$ $\pm0.006$ 32
MCNEILE
2010
LATT
$1.261$ $\pm0.018$ 33
NARISON
2010
THEO
$1.279$ $\pm0.013$ 34
CHETYRKIN
2009
THEO
$1.268$ $\pm0.009$ 35
ALLISON
2008
LATT
$1.286$ $\pm0.013$ 36
KUHN
2007
THEO
$1.295$ $\pm0.015$ 37
BOUGHEZAL
2006
THEO
$1.24$ $\pm0.09$ 38
BUCHMUELLER
2006
THEO
$1.224$ $\pm0.017$ $\pm0.054$ 39
HOANG
2006
THEO
$1.33$ $\pm0.10$ 40
AUBERT
2004X
THEO
$1.29$ $\pm0.07$ 41
HOANG
2004
THEO
$1.319$ $\pm0.028$ 42
DEDIVITIIS
2003
LATT
$1.19$ $\pm0.11$ 43
EIDEMULLER
2003
THEO
$1.289$ $\pm0.043$ 44
ERLER
2003
THEO
$1.26$ $\pm0.02$ 45
ZYABLYUK
2003
THEO
1  ALEXANDROU 2021 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. We have converted ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = $1.036$ $\pm0.017$ ${}^{+0.015}_{-0.008}$ to ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$). The simulations are carried out using 2+1+1 dynamical quarks with ${\mathit m}_{{{\mathit u}}}$ = ${\mathit m}_{{{\mathit d}}}{}\not={\mathit m}_{{{\mathit s}}}{}\not={\mathit m}_{{{\mathit c}}}$, including gauge ensembles close to the physical pion point.
2  HEITGER 2021 determines the charm quark mass using a ${{\mathit n}_{{f}}}$ = 2+1 flavor lattice QCD simulation with non-perturbatively O(a) improved Wilson fermions. They also determine ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = $1.007$ $\pm0.016$ GeV.
3  HATTON 2020 determines the charm quark mass with a lattice QCD + quenched QED simulation using the HISQ action and including ${{\mathit n}_{{f}}}$ = 2+1+1 flavors of sea quarks. ${\mathit m}_{{{\mathit c}}}$ is tuned from the ${{\mathit J / \psi}}$ meson mass giving ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = $0.9841$ $\pm0.0051$ GeV.
4  NARISON 2020 determines the quark mass using QCD Laplace sum rules from the ${{\mathit B}_{{c}}}$ mass, combined with previous determinations of the QCD condensates and ${\mathit {\mathit c}}$ and ${\mathit {\mathit b}}$ masses.
5  ABRAMOWICZ 2018 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) = $1.290$ ${}^{+0.046}_{-0.041}{}^{+0.062}_{-0.014}{}^{+0.003}_{-0.031}$ from the production of ${\mathit {\mathit c}}$ quarks in ${{\mathit e}}{{\mathit p}}$ collisions at HERA using combined H1 and ZEUS data. The experimental/fitting errors, and those from modeling and parameterization have been combined in quadrature.
6  BAZAVOV 2018 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
7  LYTLE 2018 combined with CHAKRABORTY 15 determine ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = 0.9874(48) GeV from a lattice simulation with ${{\mathit n}_{{f}}}$ = 2+1+1 flavors. They also determine the quoted value ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) for ${{\mathit n}_{{f}}}$ = 4 dynamical flavors.
8  PESET 2018 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) and ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) using an N3LO calculation of the ${{\mathit \eta}_{{c}}}$, ${{\mathit \eta}_{{b}}}$ and ${{\mathit B}_{{c}}}$ masses.
9  CHETYRKIN 2017 determine ${{\overline{\mathit m}}_{{c}}}({{\mathit \mu}}$ = 3 GeV) = $0.993$ $\pm0.008$ GeV and ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from a four-loop sum-rule computation of the cross-section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons in the charm threshold region.
10  ERLER 2017 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) = $1.272$ $\pm0.008$ GeV from a three-loop QCD sum-rule computation of the vector current correlator. This result is for fixed ${{\mathit \alpha}_{{s}}}(M_{Z}$) = 0.1182. Including an ${{\mathit \alpha}_{{s}}}$ uncertainty of $\pm0.0016$, the charm mass error increases from 8 to 9 MeV.
11  KIYO 2016 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from the ${{\mathit J / \psi}{(1S)}}$ mass at order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO).
12  DEHNADI 2015 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) using sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons at order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO), and fitting to both experimental data and lattice results.
13  CARRASCO 2014 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with ${{\mathit m}_{{u}}}$ = ${{\mathit m}_{{d}}}{}\not=$ ${{\mathit m}_{{s}}}{}\not=$ ${{\mathit m}_{{c}}}$. The ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quark masses are obtained separately by using the ${{\mathit K}}$ meson mass splittings and lattice results for the electromagnetic contributions.
14  ALEKHIN 2013 determines ${\mathit m}_{{{\mathit c}}}$ from charm production in deep inelastic scattering at HERA using approximate NNLO QCD.
15  SAMOYLOV 2013 determines ${\mathit m}_{{{\mathit c}}}$ from a study of charm dimuon production in neutrino-iron scattering using the NLO QCD result for the charm quark production cross section.
16  BODENSTEIN 2011 determine ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = $0.987$ $\pm0.009$ GeV and ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) = $1.278$ $\pm0.009$ GeV using QCD sum rules for the charm quark vector current correlator.
17  LASCHKA 2011 determine the ${{\mathit c}}$ mass from the charmonium spectrum. The theoretical computation uses the heavy potential to order 1/${\mathit m}_{{{\mathit Q}}}$ obtained by matching the short-distance perturbative result onto lattice QCD result at larger scales.
18  AUBERT 2010A determine the ${\mathit {\mathit b}}$- and ${\mathit {\mathit c}}$-quark masses from a fit to the inclusive decay spectra in semileptonic ${{\mathit B}}$ decays in the kinetic scheme (and convert it to the $\overline{\rm{}MS}$ scheme).
19  SIGNER 2009 determines the ${\mathit {\mathit c}}$-quark mass using non-relativistic sum rules to analyze the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ cross-section near threshold. Also determine the PS mass ($\mu _{F}$= 0.7 GeV) = $1.50$ $\pm0.04$ GeV.
20  NARISON 2018A determines simultaneously ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) and the 4-dimension gluon condensate using QCD exponential sum rules and their ratios evaluated at the optimal scale $\mu $ = 2.85 GeV at N2LO-N3LO of perturbative QCD and including condensates up to dimension $6 - 8$ in the (axial-)vector and (pseudo-)scalar charmonium channels.
21  NARISON 2018B determines ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) using QCD vector moment sum rules and their ratios at N2LO-N3LO of perturbative QCD and including condensates up to dimension 8.
22  BERTONE 2016 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from HERA deep inelastic scattering data using the FONLL scheme. Also determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}})=1.318$ $\pm0.054$ ${}^{+0.490}_{-0.022}$ using the fixed flavor number scheme.
23  CHAKRABORTY 2015 is a lattice QCD computation using 2+1+1 dynamical flavors. Moments of pseudoscalar current-current correlators are matched to ${{\mathit \alpha}_{{s}}^{3}}$-accurate QCD perturbation theory with the ${{\mathit \eta}_{{c}}}$ meson mass tuned to experiment.
24  ABRAMOWICZ 2013C determines ${\mathit m}_{{{\mathit c}}}$ from charm production in deep inelastic ${{\mathit e}}{{\mathit p}}$ scattering, using the QCD prediction at NLO order. The uncertainties from model and parameterization assumptions, and the value of ${{\mathit \alpha}_{{s}}}$, of $\pm0.03$, $\pm 0.02$, and $\pm 0.02$ respectively, have been combined in quadrature.
25  DEHNADI 2013 determines ${\mathit m}_{{{\mathit c}}}$ using QCD sum rules for the charmonium spectrum and charm continuum to order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO). The statistical and systematic experimental errors of $\pm0.006$ and $\pm0.009$ have been combined in quadrature. The theoretical uncertainties $\pm0.019$ from truncation of the perturbation series, $\pm0.010$ from ${{\mathit \alpha}_{{s}}}$, and $\pm0.002$ from the gluon condensate have been combined in quadrature.
26  NARISON 2013 determines ${\mathit m}_{{{\mathit c}}}$ using QCD spectral sum rules to order ${{\mathit \alpha}_{{s}}^{2}}$ (NNLO) and including condensates up to dimension 6.
27  ALEKHIN 2012 determines ${\mathit m}_{{{\mathit c}}}$ from heavy quark production in deep inelastic scattering at HERA using approximate NNLO QCD.
28  NARISON 2012A determines ${\mathit m}_{{{\mathit c}}}$ using sum rules for the vector current correlator to order ${{\mathit \alpha}_{{s}}^{3}}$, including the effect of gluon condensates up to dimension eight.
29  ALEKHIN 2011 determines ${\mathit m}_{{{\mathit c}}}$ from heavy quark production in deep inelastic scattering using fixed target and HERA data, and approximate NNLO QCD.
30  BLOSSIER 2010 determines quark masses from a computation of the hadron spectrum using ${{\mathit n}_{{f}}}$=2 dynamical twisted-mass Wilson fermions.
31  BODENSTEIN 2010 determines ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = $1.008$ $\pm0.026$ GeV using finite energy sum rules for the vector current correlator. The authors have converted this to ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) using ${{\mathit \alpha}_{{s}}}({{\mathit M}_{{Z}}}$) = $0.1189$ $\pm0.0020$.
32  MCNEILE 2010 determines ${\mathit m}_{{{\mathit c}}}$ by comparing the order ${{\mathit \alpha}_{{s}}^{3}}$ perturbative results for the pseudo-scalar current to lattice simulations with ${{\mathit n}_{{f}}}$ = 2+1 sea-quarks by the HPQCD collaboration.
33  NARISON 2010 determines ${\mathit m}_{{{\mathit c}}}$ from ratios of moments of vector current correlators computed to order ${{\mathit \alpha}_{{s}}^{3}}$ and including the dimension-six gluon condensate.
34  CHETYRKIN 2009 determine ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Q}}{{\overline{\mathit Q}}}$ cross-section and sum rules, using an order ${{\mathit \alpha}_{{s}}^{3}}$ computation of the heavy quark vacuum polarization. They also determine ${\mathit m}_{{{\mathit c}}}$(3 GeV) = $0.986$ $\pm0.013$GeV.
35  ALLISON 2008 determine ${\mathit m}_{{{\mathit c}}}$ by comparing four-loop perturbative results for the pseudo-scalar current correlator to lattice simulations by the HPQCD collaboration. The result has been updated in MCNEILE 2010 .
36  KUHN 2007 determine ${{\overline{\mathit m}}_{{c}}}({{\mathit \mu}}$ = 3 GeV) = $0.986$ $\pm0.013$ GeV and ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from a four-loop sum-rule computation of the cross-section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons in the charm threshold region.
37  BOUGHEZAL 2006 result comes from the first moment of the hadronic production cross-section to order ${{\mathit \alpha}_{{s}}^{3}}$.
38  BUCHMUELLER 2006 determine ${{\mathit m}_{{b}}}$ and ${{\mathit m}_{{c}}}$ by a global fit to inclusive ${{\mathit B}}$ decay spectra.
39  HOANG 2006 determines ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from a global fit to inclusive ${{\mathit B}}$ decay data. The ${{\mathit B}}$ decay distributions were computed to order ${{\mathit \alpha}_{{s}}^{2}}{{\mathit \beta}_{{0}}}$, and the conversion between different ${{\mathit m}_{{c}}}$ mass schemes to order ${{\mathit \alpha}_{{s}}^{3}}$.
40  AUBERT 2004X obtain ${\mathit m}_{{{\mathit c}}}$ from a fit to the hadron mass and lepton energy distributions in semileptonic ${{\mathit B}}$ decay. The paper quotes values in the kinetic scheme. The $\overline{\rm{}MS}$ value has been provided by the BABAR collaboration.
41  HOANG 2004 determines ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from moments at order ${{\mathit \alpha}_{{s}}^{2}}$ of the charm production cross-section in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation.
42  DEDIVITIIS 2003 use a quenched lattice computation of heavy-heavy and heavy-light meson masses.
43  EIDEMULLER 2003 determines m$_{b}$ and m$_{c}$ using QCD sum rules.
44  ERLER 2003 determines m$_{b}$ and m$_{c}$ using QCD sum rules. Includes recent BES data.
45  ZYABLYUK 2003 determines m$_{c}$ by using QCD sum rules in the pseudoscalar channel and comparing with the $\eta _{c}$ mass.

           ${\mathit {\mathit c}}$-QUARK MASS (GeV)
References:
ALEXANDROU 2021
PR D104 074515 Quark masses using twisted mass fermion gauge ensembles
HEITGER 2021
JHEP 2105 288 Determination of the charm quark mass in lattice QCD with $2+1$ flavours on fine lattices
HATTON 2020
PR D102 054511 Charmonium properties from lattice $QCD$+QED : Hyperfine splitting, $J/\psi$ leptonic width, charm quark mass, and $a^c_\mu$
NARISON 2020
PL B802 135221 $\overline m_c$ and $\overline m_b$ from $M_{Bc}$ and improved estimates of $f_{Bc}$ and $f_{Bc(2S)}$
ABRAMOWICZ 2018
EPJ C78 473 Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic $ep$ scattering at HERA
BAZAVOV 2018
PR D98 054517 Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD
LYTLE 2018
PR D98 014513 Determination of quark masses from $\mathbf{n_f=4}$ lattice QCD and the RI-SMOM intermediate scheme
NARISON 2018A
IJMP A33 1850045 QCD parameter correlations from heavy quarkonia
NARISON 2018B
PL B784 261 Updating $\bar m_{c,b}(\bar m_{c,b})$ from SVZ-moments and their ratios
PESET 2018
JHEP 1809 167 The charm/bottom quark mass from heavy quarkonium at N$^{3}$LO
CHETYRKIN 2017
PR D96 116007 Addendum to CHETYRKIN 2009 “Charm and Bottom Quark Masses: An Update”
ERLER 2017
EPJ C77 99 Charm Quark Mass with Calibrated Uncertainty
BERTONE 2016
JHEP 1608 050 A Determination of ${\mathit m}_{{{\mathit c}}}({\mathit m}_{{{\mathit c}}}$) from HERA Data using a Matched Heavy-Flavor Scheme
KIYO 2016
PL B752 122 Determination of ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from Quarkonium $1S{}^{}{}^{}$ Energy Levels in Perturbative QCD
CHAKRABORTY 2015
PR D91 054508 High-Precision Quark Masses and QCD Coupling from ${{\mathit n}_{{f}}}$ = 4 Lattice QCD
DEHNADI 2015
JHEP 1508 155 Bottom and Charm Mass Determinations with a Convergence Test
CARRASCO 2014
NP B887 19 Up, Down, Strange and Charm Quark Masses with $\mathit N_{f}$ = 2+1+1 Twisted Mass Lattice QCD
ABRAMOWICZ 2013C
EPJ C73 2311 Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ${{\mathit e}}{{\mathit p}}$ Scattering at HERA
ALEKHIN 2013
PL B720 172 Precise Charm-Quark Mass from Deep-Inelastic Scattering
DEHNADI 2013
JHEP 1309 103 Charm Mass Determination from QCD Charmonium Sum Rules at Order ${{\mathit \alpha}^{3}_{s}}$
NARISON 2013
PL B718 1321 A Fresh Look into ${{\overline{\mathit m}}_{{c,b}}}({{\overline{\mathit m}}_{{c,b}}}$) and Precise ${{\mathit f}}_{{{\mathit D}}_{(s)},{{\mathit B}}_{(s)}}$ from Heavy$−$Light QCD Spectral Sum Rules
SAMOYLOV 2013
NP B876 339 A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment
ALEKHIN 2012
PL B718 550 Determination of the Charm-Quark Mass in the $\overline{\rm{}MS}$ Scheme using Charm Production Data from Deep-Inelastic Scattering at HERA
NARISON 2012A
PL B706 412 Gluon Condensates and Precise ${{\overline{\mathit m}}_{{c,b}}}$ from QCD-Moments and their Ratios to Order $\mathit \alpha {}^{3}_{s}$ and $<\mathit G{}^{4}>$
ALEKHIN 2011
PL B699 345 Heavy-Quark Deep-Inelastic Scattering with a Running Mass
BODENSTEIN 2011
PR D83 074014 QCD Sum Rule Determination of the Charm-Quark Mass
LASCHKA 2011
PR D83 094002 Quark-Antiquark Potential to Order 1/${{\mathit m}}$ and Heavy Quark Masses
AUBERT 2010A
PR D81 032003 Measurement and Interpretation of Moments in Inclusive Semileptonic Decays ${{\overline{\mathit B}}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}}$
BLOSSIER 2010
PR D82 114513 Average up/down, strange, and charm Quark Masses with $\mathit N_{f}$=2 Twisted-Mass Lattice QCD
BODENSTEIN 2010
PR D82 114013 Charm-Quark Mass from Weighted Finite Energy QCD Sum Rules
MCNEILE 2010
PR D82 034512 High-Precision ${\mathit {\mathit c}}$ and ${\mathit {\mathit b}}$ Masses, and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD
NARISON 2010
PL B693 559 Gluon Condensates and ${\mathit {\mathit c}}$, ${\mathit {\mathit b}}$ Quark Masses from Quarkonia Ratios of Moments
Also
PL B705 544 (errat.) Erratum to NARISON 2010 : Gluon Condensates and ${\mathit {\mathit c}}$, ${\mathit {\mathit b}}$ Quark Masses from Quarkonia Ratios of Moments
CHETYRKIN 2009
PR D80 074010 Charm and Bottom Quark Masses: An Update
SIGNER 2009
PL B672 333 The Charm Quark Mass from non-Relativistic Sum Rules
ALLISON 2008
PR D78 054513 High-Precision Charm-Quark Mass and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD
KUHN 2007
NP B778 192 Heavy Quark Masses from Sum Rules in Four-Loop Approximation
BOUGHEZAL 2006
PR D74 074006 Charm- and Bottom-Quark Masses from Perturbative QCD
BUCHMUELLER 2006
PR D73 073008 Fit to Moments of Inclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\overline{\mathit \nu}}}$ and ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{s}}}{{\mathit \gamma}}$ Decay Distributions using Heavy Quark Expansions in the Kinetic Scheme
HOANG 2006
PL B633 526 Charm Quark Mass from Inclusive Semileptonic ${{\mathit B}}$ Decays
AUBERT 2004X
PRL 93 011803 Determination of the Branching Fraction for ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\mathit \nu}}$ Decays and of $\vert {{\mathit V}_{{cb}}}\vert $ from Hadronic-Mass and Lepton-Energy Moments
HOANG 2004
PL B594 127 $\overline{\rm{}MS}$ Charm Mass from Charmonium Sum Rules with Contour Improvement
DEDIVITIIS 2003
NP B675 309 Heavy Quark Masses in the Continuum Limit of Quenched Lattice QCD
EIDEMULLER 2003
PR D67 113002 QCD Moment Sum Rules for Coulomb Systems: the Charm and Bottom Quark Masses
ERLER 2003
PL B558 125 Precision Determination of Heavy Quark Masses and the Strong Coupling Constant
ZYABLYUK 2003
JHEP 0301 081 Gluon Condensate and ${\mathit {\mathit c}}$ Quark Mass in Pseudoscalar Sum Rules at Three Loop Order