Hidden Photons: Kinetic Mixing Parameter Limits

INSPIRE   PDGID:
S029HPH
Limits are on the kinetic mixing parameter $\chi $ which is defined by the Lagrangian $\mathit L$ = $\text{-}{1\over 4}{{\mathit F}}_{ {{\mathit \mu}} {{\mathit \nu}} }{{\mathit F}}{}^{ {{\mathit \mu}} {{\mathit \nu}} }$ $−{1\over 4}{{\mathit F}}{}^{'}_{ {{\mathit \mu}} {{\mathit \nu}} }{{\mathit F}}{}^{' {{\mathit \mu}} {{\mathit \nu}} }$ $\text{-}{\chi \over 2}{{\mathit F}}_{ {{\mathit \mu}} {{\mathit \nu}} }{{\mathit F}}{}^{' {{\mathit \mu}} {{\mathit \nu}} }$ + ${{{\mathit m}}{}^{2}_{{{\mathit \gamma}^{\,'}}}\over 2}{{\mathit A}}{}^{'}_{{{\mathit \mu}}}{{\mathit A}}{}^{'{{\mathit \mu}}}$, where ${{\mathit A}_{{\mu}}}$ and ${{\mathit A}_{{\mu}}^{\,'}}$ are the photon and hidden-photon fields with field strengths ${{\mathit F}}_{ {{\mathit \mu}} {{\mathit \nu}} }$ and ${{\mathit F}}{}^{'}_{ {{\mathit \mu}} {{\mathit \nu}} }$, respectively, and is the hidden-photon mass.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
1
AAD
2022J
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 60$ GeV
2
AAD
2022S
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 10 GeV
$<2 \times 10^{-15}$ 90 3
APRILE
2022
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.9 keV
$<2 \times 10^{-15}$ 90 4
APRILE
2022
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.01 - 0.4$ keV
$<5 \times 10^{-17}$ 90 5
APRILE
2022B
XENT ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$= $1 - 39,44 - 140$ keV
$<0.01$ 90 6
BATTAGLIERI
2022
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $3 - 100$ MeV
($4.6$ ${}^{+0.5}_{-0.4}$) $ \times 10^{-15}$ 68 7
BOLTON
2022
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = ($8.4$ $\pm0.6$) $ \times 10^{-14}$ eV
$<1 \times 10^{-13}$ 90 8
CERVANTES
2022
ORPH ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $65.5 - 69.3$ $\mu $eV
$<1 \times 10^{-12}$ 90 9
CHILES
2022
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.7 - 0.8$ eV
$<8.7 \times 10^{-11}$ 95 10
HOCHBERG
2022
SNSP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.73 - 30$ eV
11
LEES
2022
BABR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 \times 10^{-3} - 3.16$ GeV
$<7.97 \times 10^{-9}$ 95 12
LU
2022
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ $3 \times 10^{-5}$ eV
$<6.86 \times 10^{-11}$ 90 13
MANENTI
2022
MDHI ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.61 eV
$<0.03$ 95 14
THOMAS
2022
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 80$ GeV
15
TUMASYAN
2022AH
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $4 - 62.5$ GeV
16
TUMASYAN
2022N
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.6 - 49$ GeV
17
WU
2022A
PPTA ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ $10^{-23}$eV
$<8 \times 10^{-6}$ 90 18
ANDREEV
2021
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 \times 10^{-3} - 1$ GeV
$<2.3 \times 10^{-4}$ 90 19
ANDREEV
2021A
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 0.35$ GeV
$<1.6 \times 10^{-4}$ 95 20
BI
2021
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.03 - 0.06$ eV
$<3 \times 10^{-5}$ 90 21
CAZZANIGA
2021
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10 - 390$ MeV
$<1.68 \times 10^{-15}$ 90 22
DIXIT
2021
CNTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 24.86 $\mu $eV
$<2 \times 10^{-16}$ 90 23
GHOSH
2021
RVUE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2 - 30$ $\mu $eV
$<1.8 \times 10^{-13}$ 24
GODFREY
2021
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.2637 - 0.2648$ $\mu $eV
$<3 \times 10^{-12}$ 95 25
KOPYLOV
2021A
CNTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $9 - 40$ eV
$<0.02$ 95 26
KRIBS
2021
${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 10 GeV
27
SCHMIDT
2021
THEO ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 0.6 GeV
$<3 \times 10^{-8}$ 90 28
TSAI
2021
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.78 GeV
$<1 \times 10^{-4}$ 90 29
AAIJ
2020C
LHCB ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 214 MeV
30
AAIJ
2020C
LHCB ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $218 - 315$ MeV
31
ABLIKIM
2020AB
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.2 - 2.1$ GeV
$<4.1 \times 10^{-12}$ 90 32
AGOSTINI
2020
HPGE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 60 keV $-$ 1 MeV
$<3.3 \times 10^{-14}$ 90 33
AMARAL
2020
SCDM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.2 - 50$ eV
$<1.2 \times 10^{-14}$ 90 34
AN
2020
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 200 eV
$<6.72 \times 10^{-13}$ 95 35
ANDRIANAVALOM..
2020
FUNK ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.95 - 8.55$ eV
$<1 \times 10^{-16}$ 90 36
APRILE
2020
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 200$ keV
$<9 \times 10^{-16}$ 90 37
ARALIS
2020
SCDM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.04 - 500$ keV
$<3 \times 10^{-5}$ 90 38
ARGUELLES
2020
THEO ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.01 GeV
$<7 \times 10^{-14}$ 90 39
ARNAUD
2020
EDEL ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 40$ eV
$<8.2 \times 10^{-5}$ 90 40
BANERJEE
2020
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.5 - 24$ MeV
$<7 \times 10^{-15}$ 90 41
BARAK
2020
SENS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.2 - 12.8$ eV
42
KRASNIKOV
2020
RVUE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 16.7 MeV
$<1.4 \times 10^{-14}$ 90 43
SHE
2020
CDEX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10 - 300$ eV
$<1.3 \times 10^{-15}$ 90 44
SHE
2020
CDEX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 4$ keV
$<1 \times 10^{-3}$ 90 45
SIRUNYAN
2020AQ
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $11.5 - 75$ GeV, $110 - 200$ GeV
$<4.3 \times 10^{-10}$ 95 46
TOMITA
2020
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $115.79 - 115.85$ $\mu $eV
$<9 \times 10^{-16}$ 90 47
WANG
2020A
CDEX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.185 - 10$ keV
48
AABOUD
2019G
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $20 - 60$ GeV
$<6 \times 10^{-3}$ 90 49
ABLIKIM
2019A
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.01 - 2.4$ GeV
$<3.4 \times 10^{-3}$ 90 50
ABLIKIM
2019H
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 2.1$ GeV
$<8 \times 10^{-15}$ 90 51
AGUILAR-AREVA..
2019A
DAMC ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.2 - 30$ eV
$<9 \times 10^{-17}$ 90 52
APRILE
2019D
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.186 - 5$ keV
$<7.5 \times 10^{-6}$ 90 53
BANERJEE
2019
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 200$ MeV
$<2 \times 10^{-11}$ 54
BHOONAH
2019
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-22} - 10^{-10}$ eV
$<5 \times 10^{-12}$ 95 55
BRUN
2019
SHUK ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $20.8 - 28.3$ $\mu $eV
$<4.4 \times 10^{-4}$ 90 56
CORTINA-GIL
2019
NA62 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $60 - 110$ MeV
$<3 \times 10^{-5}$ 95 57
DANILOV
2019
TEXO ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 20 eV - 1 MeV
$<6 \times 10^{-9}$ 95 58
HOCHBERG
2019
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.8 - 4$ eV
$<1 \times 10^{-11}$ 95 59
KOPYLOV
2019
CNTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $9 - 40$ eV
$<1.5 \times 10^{-9}$ 60
KOVETZ
2019
COSM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-23} - 10^{-13}$ eV
$<3 \times 10^{-14}$ 95 61
NGUYEN
2019
WDMX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 6 neV $-$ 2.07 $\mu $eV
$<4.5 \times 10^{-14}$ 90 62
ABE
2018F
XMAS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $40 - 120$ keV
$<2.5 \times 10^{-3}$ 95 63
ADRIAN
2018
HPS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $19 - 81$ MeV
$<4.4 \times 10^{-4}$ 90 64
ANASTASI
2018B
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $519 - 987$ MeV
$<4 \times 10^{-15}$ 90 65
ARMENGAUD
2018
EDE3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.8 - 500$ keV
66
BANERJEE
2018
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 23$ MeV
$<1.8 \times 10^{-5}$ 90 67
BANERJEE
2018A
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 100$ MeV
$<1 \times 10^{-8}$ 90 68
KNIRCK
2018
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.67 - 0.92$ meV
$<3.1 \times 10^{-14}$ 90 69
ABGRALL
2017
HPGE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 11.8 keV
$<6 \times 10^{-4}$ 90 70
ABLIKIM
2017AA
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.5 - 3.4$ GeV
$<7 \times 10^{-15}$ 90 71
ANGLOHER
2017
CRES ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.3 - 0.7$ keV
$<1.2 \times 10^{-4}$ 90 72
BANERJEE
2017
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.002 - 0.4$ GeV
$<2 \times 10^{-11}$ 73
CHANG
2017
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 15 MeV
$<4.5 \times 10^{-3}$ 90 74
DUBININA
2017
EMUL ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.1 - 24$ MeV
$<4 \times 10^{-4}$ 90 75
LEES
2017E
BABR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 4.7 GeV
76
AAD
2016AG
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 2$ GeV
$<4.4 \times 10^{-4}$ 90 77
ANASTASI
2016
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $527 - 987$ MeV
$<1.7 \times 10^{-6}$ 95 78
KHACHATRYAN
2016
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 GeV
$<0.04$ 95 79
AAD
2015CD
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $15 - 55$ GeV
$<1.4 \times 10^{-3}$ 90 80
ADARE
2015
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $30 - 90$ MeV
81
AN
2015A
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12 eV - 40 keV
82
ANASTASI
2015
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2${\mathit m}_{{{\mathit \mu}}}$ - 1 GeV
$<1.7 \times 10^{-3}$ 90 83
ANASTASI
2015A
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $5 - 320$ MeV
$<4.2 \times 10^{-4}$ 90 84
BATLEY
2015A
NA48 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 36 MeV
85
JAEGLE
2015
BELL ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 3.5$ GeV
$<3 \times 10^{-13}$ 86
KAZANAS
2015
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2${\mathit m}_{{{\mathit e}}}$ $-$ 100 MeV
$<6 \times 10^{-12}$ 87
SUZUKI
2015
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.9 - 4.3$ eV
$<2.3 \times 10^{-13}$ 99.7 88
VINYOLES
2015
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 8 eV
$<2 \times 10^{-13}$ 89
ABE
2014F
XMAS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $40 - 120$ keV
$<1.8 \times 10^{-3}$ 90 90
AGAKISHIEV
2014
HDES ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 63 MeV
$<9.0 \times 10^{-4}$ 90 91
BABUSCI
2014
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 969 MeV
92
BATELL
2014
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-3} - 1$ GeV
$<1.3 \times 10^{-7}$ 95 93
BLUEMLEIN
2014
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.6 GeV
$<3 \times 10^{-18}$ 94
FRADETTE
2014
COSM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $50 - 300$ MeV
$<3.5 \times 10^{-4}$ 90 95
LEES
2014J
BABR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.2 GeV
$<9 \times 10^{-4}$ 95 96
MERKEL
2014
A1 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $40 - 300$ MeV
$<3 \times 10^{-15}$ 97
AN
2013B
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 keV
$<7 \times 10^{-14}$ 98
AN
2013C
XE10 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 100 eV
$<8 \times 10^{-4}$ 99
DIAMOND
2013
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $30 - 250$ MeV
$<2 \times 10^{-3}$ 90 100
GNINENKO
2013
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $25 - 120$ MeV
$<2.2 \times 10^{-13}$ 101
HORVAT
2013
HPGE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 230 eV
$<8.06 \times 10^{-5}$ 95 102
INADA
2013
LSW ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.04 eV$−$26 keV
$<2 \times 10^{-10}$ 95 103
MIZUMOTO
2013
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 eV
$<1.7 \times 10^{-7}$ 104
PARKER
2013
LSW ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 53 $\mu $eV
$<5.32 \times 10^{-15}$ 105
PARKER
2013
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 53 $\mu $eV
$<1 \times 10^{-15}$ 106
REDONDO
2013
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 keV
$<8 \times 10^{-8}$ 90 107
GNINENKO
2012A
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 135$ MeV
$<1 \times 10^{-7}$ 90 108
GNINENKO
2012B
CHRM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 500$ MeV
$<1 \times 10^{-3}$ 90 109
ABRAHAMYAN
2011
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $175 - 250$ MeV
$<9 \times 10^{-8}$ 95 110
BLUEMLEIN
2011
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 70 MeV
$<1 \times 10^{-7}$ 111
BJORKEN
2009
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2 - 400$ MeV
$<5 \times 10^{-9}$ 112
BJORKEN
2009
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2 - 50$ MeV
1  AAD 2022J look for exotic decays of the SM-like Higgs boson, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ and ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ , and set limits on the kinetic mixing and the Higgs portal coupling. See their Figs. 19 and 20 for the mass-dependent limits.
2  AAD 2022S look for decays of a Higgs boson into ${{\mathit \gamma}}$ and ${{\mathit \gamma}^{\,'}}$, and set the upper limit on the branching ratio at 0.018 (95$\%$ CL) for the 125 GeV Higgs boson. For the quoted mass range, the signal acceptance changes by less than 1$\%$.
3  APRILE 2022 is analogous to AN 2020 , and set limits $\chi $ $<$ $3 \times 10^{-13}$ (eV/${\mathit m}_{{{\mathit \gamma}^{\,'}}}$) for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 3 eV (90$\%$ C.L.). For ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $>$ 3 eV, see their Fig. 16 for mass-dependent limits.
4  APRILE 2022 extend APRILE 2019 to lower masses by removing the background of ionization signals correlated with high-energy events. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.09 keV. See their Fig. 15 for mass-dependent limits.
5  APRILE 2022B is an update of APRILE 2020 , and set limits $\chi $ ${ {}\lesssim{} }$ $5 \times 10^{-17} - 2 \times 10^{-13}$. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 keV. They exclude the XENON1T excess found in APRILE 2020 . See their Fig. 6 for mass-dependent limits.
6  BATTAGLIERI 2022 is analogous to BATELL 2014 , and derived limits from the electron beam dump experiment at Jefferson Lab (BDX-MINI). Limits at the level of $7 \times 10^{-5} - 0.01$ are obtained for the dark matter mass ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/3 and the hidden gauge coupling $\alpha _{D}$ = 0.1. See their Fig. 11.
7  BOLTON 2022 use the Ly-$\alpha $ forest at z $\simeq{}$ 0.1 as a calorimeter for heating in the intergalactic medium by the resonant conversion of hidden photon dark matter to photons, which is assumed to be responsible for the tension between the predicted and observed Ly-$\alpha $ absorption linewidths.
8  CERVANTES 2022 use a dielectrically loaded Fabry-Perot open cavity to look for hidden photon dark matter. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.45 GeV/cm${}^{3}$ is assumed. See their Fig. 5 for mass-dependent limits.
9  CHILES 2022 look for hidden photon dark matter by using a layered dielectric target and a superconducting nanowire single-photon detector. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.4 GeV/cm${}^{3}$ is assumed. See their Fig. 4 for mass-dependent limits.
10  HOCHBERG 2022 update HOCHBERG 2019 . The quoted limit applies to ${\mathit m}_{{{\mathit A}^{0}}}$ $\simeq{}$ 11 eV. See their Fig. 5 for mass-dependent limits.
11  LEES 2022 look for a hidden fermion-fermion bound state decaying into three hidden photons, which subsequently decay into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , or ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ . For the bound-state mass in the range of $0.05 - 9.5$ GeV, limits at the level of $5 \times 10^{-5} - 1 \times 10^{-3}$ are obtained. See their Fig. 6 for mass-dependent limits.
12  LU 2022 derive the limit by studying the effect of photons oscillating into hidden photons on the surface luminosity of the neutron star RX J1856.6-3754.
13  MANENTI 2022 look for hidden photon dark matter by using a multilayer dielectric haloscope. Limits between $6.86 \times 10^{-11}$ and $5 \times 10^{-8}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $1.1 - 3.1$ eV. See their Fig. 11 for mass-dependent limits.
14  THOMAS 2022 improved KRIBS 2021 by taking account of the changes in the parton distribution functions due to the inclusion of dark photons. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 4 GeV. Limits in the range of $0.03 - 0.09$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 80$ GeV. See their Fig. 1 for the limits.
15  TUMASYAN 2022AH look for exotic decays of the SM-like Higgs boson, ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ , and set limits on the Higgs portal coupling. See their Fig. 6 for the limits.
16  TUMASYAN 2022N look for exotic decays of the SM-like Higgs boson, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ), and set limits on the branching fraction product. See their Fig. 7 for mass- and lifetime-dependent limits.
17  WU 2022A look for direction-dependent oscillations in the gravitational potential generated by ultralight hidden photon dark matter, and set a bound on its local density as $\rho _{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 5 GeV/cm${}^{3}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ $10^{-23}$ eV at 95$\%$ CL.
18  ANDREEV 2021 is analogous to BANERJEE 2018A. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 MeV. See their Fig. 3 for mass-dependent limits.
19  ANDREEV 2021A extends the limits of BANERJEE 2019 by taking account of production through the resonant annihilation of secondary positrons with atomic electrons. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.23 GeV, assuming the fermion dark matter of mass ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/3 and the hidden gauge coupling $\alpha _{D}$ = 0.1. See their Fig.3 for mass-dependent limits.
20  BI 2021 look for the gamma-ray spectral attenuation due to scattering with hidden photons constituting all dark matter, using the measurements of sub-PeV gamma-rays from the Crab Nebula by the Tibet AS${{\mathit \gamma}}$ and HAWC experiments, together with MAGIC and HEGRA gamma-ray data. See their Fig. 4 for mass-dependent limits.
21  CAZZANIGA 2021 look for semi-visible decays of hidden photons, ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}_{{1}}}{{\mathit \chi}_{{2}}}$ ( ${{\mathit \chi}_{{2}}}$ $\rightarrow$ ${{\mathit \chi}_{{1}}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ ), where ${{\mathit \chi}_{{1}}}$ and ${{\mathit \chi}_{{2}}}$ are hidden fermions. They exclude $3 \times 10^{-5}{ {}\lesssim{} }$ $\chi $ ${ {}\lesssim{} }$ $0.02$ assuming the hidden gauge coupling ${{\mathit \alpha}_{{D}}}$ = 0.1, and the fermion masses ${\mathit m}_{{{\mathit \chi}_{{1}}}}$ = ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/3, (${\mathit m}_{{{\mathit \chi}_{{2}}}}$ $−$ ${\mathit m}_{{{\mathit \chi}_{{1}}}})/{\mathit m}_{{{\mathit \chi}_{{1}}}}$ = 0.4. See their Fig. 4 for mass-dependent limits.
22  DIXIT 2021 look for hidden photon dark matter by using a superconducting transmon qubit dispersively coupled to a high $\mathit Q$ storage cavity. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.4 GeV/cm${}^{3}$ is assumed. See their Fig.4 for mass-dependent limits.
23  GHOSH 2021 use existing haloscope axion search limits to set limits on hidden photon dark matter, considering the polarization of hidden photons. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 3 $\mu $eV. See their Fig. 1 for mass-dependent limits.
24  GODFREY 2021 look for hidden photon dark matter by using a wideband antenna, and set 5$\sigma $ limits on $\chi $. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.38 GeV/cm${}^{3}$ is assumed. See their updated Fig. 12 in arXiv:2101.02805v4 for mass-dependent limits in the range of ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.207 - 1.24$ $\mu $eV.
25  KOPYLOV 2021A is an update of KOPYLOV 2019 , but use ${}^{}\mathrm {Ne}$ gas instead of ${}^{}\mathrm {Ar}$. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12 eV. See their Fig. 4 for mass-dependent limits.
26  KRIBS 2021 used the HERA data on neutral current deep inelastic ${{\mathit e}}{{\mathit p}}$ scattering to derive the limits, which become weaker for heavier masses. See their Fig. 3 for mass-dependent limits.
27  SCHMIDT 2021 use the microscopic Parton-Hadron-String Dynamics approach to extract limits by comparing the theoretically calculated dilepton spectra with the HADES data on the search for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ . See their Fig. 5 for the mass-dependent limits for various allowed surplus of the hidden photon contribution over the standard model yield.
28  TSAI 2021 update the limits from the CHARM and NuCal experiments, taking account of additional production channels from proton bremsstrahlung and ${{\mathit \eta}}$ meson decays, respectively. Limits between $3 \times 10^{-8}$ and $1 \times 10^{-4}$ are obtained for 0.01 $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 0.8 GeV (see their Fig. 1).
29  AAIJ 2020C look for hidden photons produced from the ${{\mathit p}}{{\mathit p}}$ collision in the decay channel ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ . For prompt decaying hidden photons, limits at the level of $10^{-4} - 10^{-3}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.214 - 30$ GeV. See their Fig. 2 for mass-dependent limits.
30  AAIJ 2020C look for hidden photons produced from the ${{\mathit p}}{{\mathit p}}$ collision in the decay channel ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ . For hidden photons with lifetimes of order ps, limits at the level of $10^{-5}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $218 - 315$ MeV. See their Fig. 4 for mass-dependent limits.
31  ABLIKIM 2020AB search for ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \pi}^{0}}$ ), and set the upper limit on the product branching fraction of order $10^{-7}$. See their Fig. 7 for mass-dependent limits.
32  AGOSTINI 2020 is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 150 keV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. Their limits in their Fig. 3 were later found to be incorrect due to an error of their Eqs. (1) and (2). See Fig. 3 in AGOSTINI 2022A for the corrected limits.
33  AMARAL 2020 use a second-generation SuperCDMS high-voltage eV-resolution detector to set limits on dark-matter dark photon absorption. The quoted limit is for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 17 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 3 for mass-dependent limits.
34  AN 2020 updates the direct detection limit of AN 2013C on solar flux of hidden photons; $\chi $ $<$ $1.6 \times 10^{-12}$ (eV/${\mathit m}_{{{\mathit \gamma}^{\,'}}}$) for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 6 eV (90$\%$ C.L.). For ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $>$ 6 eV, see their Fig. 1 for mass-dependent limits.
35  ANDRIANAVALOMAHEFA 2020 is analogous to SUZUKI 2015 , but uses a mirror that is about one order of magnitude larger than in similar studies in the past. Limits at the level of $10^{-12}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2.5 - 7$ eV. See their Fig.23 and Table III for mass-dependent limits.
36  APRILE 2020 is analogous to ABE 2014F, and set limits $\chi $ ${ {}\lesssim{} }$ $10^{-16} - 10^{-12}$. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 keV. They also found an excess over known backgrounds, which favors the mass ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2.3$ $\pm0.2$ keV with a 3 $\sigma $ significance. See their Fig. 10 for mass-dependent limits.
37  ARALIS 2020 is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.1 keV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. The limits at masses above 3 keV in their Fig. 10 was later found to be incorrect due to an error in their analysis. See Fig. 3 in ARALIS 2021 for the corrected limits.
38  ARGUELLES 2020 examine hidden-photon production in atmospheric cosmic-ray showers and its decay in IceCube and Super-Kamiokande. The quoted limit assumes a lifetime of $\mathit c\tau $ = 0.1 km. See their Fig. 16 for mass- and lifetime-dependent limits.
39  ARNAUD 2020 look for the absorption signal of hidden photon dark matter in a ${}^{}\mathrm {Ge}$ detector. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 9 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 3 for mass-dependent limits.
40  BANERJEE 2020 is an update of BANERJEE 2018 . They exclude $8.2 \times 10^{-5}{ {}\lesssim{} }$ $\chi $ ${ {}\lesssim{} }$ $0.01$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.5 - 24$ MeV. In particular, they exclude $\chi $ = $1.2 \times 10^{-4} - 6.8 \times 10^{-4}$ for the 16.7 MeV gauge boson. See their Fig. 5 for mass-dependent limits.
41  BARAK 2020 is analogous to AGUILAR-AREVALO 2019A, and look for hidden photon dark matter by using the Skipper CCD. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12.8 eV. See their Fig. 4 for mass-dependent limits.
42  KRASNIKOV 2020 showed that the limit of BANERJEE 2020 combined with the measured anomalous magnetic moment of the electron exclude the 16.7 MeV gauge boson suggested by the ATOMKI (KRASZNAHORKAY 2016 ) experiment if it has pure vector or axial-vector interactions.
43  SHE 2020 look for solar hidden photons. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 180 eV. See their Fig. 4 for mass-dependent limits.
44  SHE 2020 look for hidden photon dark matter and set limits $\chi $ $<$ $1.3 \times 10^{-15} - 2.8 \times 10^{-14}$ for the quoted mass range. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 6 for mass-dependent limits.
45  SIRUNYAN 2020AQ look for a narrow resonance decaying into a pair of muons. For ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 45 GeV, they use dedicated high-rate dimuon triggers to reduce the muon transverse momentum thresholds. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 50 GeV, and limits of order $10^{-3}$ are obtained for the quoted mass range. See their Fig. 3 for mass-dependent limits.
46  TOMITA 2020 look for hidden photon dark matter using a planar metal plate and cryogenic receiver and set limits $\chi $ $<$ $1.8 - 4.3 \times 10^{-10}$ for the quoted mass range. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.39 GeV/cm${}^{3}$ is assumed. See their Fig. 7 for mass-dependent limits.
47  WANG 2020A is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 185 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 11 for mass-dependent limits.
48  AABOUD 2019G look for ${{\mathit h}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) and exclude a kinetic mixing around $10^{-9} - 10^{-8}$ for B( ${{\mathit h}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ ) = 0.01 and 0.1. See their Fig. 9 for mass-dependent limits.
49  ABLIKIM 2019A look for ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \eta}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ). Limits between $6 \times 10^{-3}$ and $0.05$ are obtained (see their Fig. 8).
50  ABLIKIM 2019H look for ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \eta}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ). Limits between $3.4 \times 10^{-3}$ and $0.026$ are obtained. See their Fig. 5 for mass-dependent limits.
51  AGUILAR-AREVALO 2019A look for the absorption signal of hidden photon dark matter by using a CCD. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 17 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 4 for mass-dependent limits.
52  APRILE 2019D is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.7 keV. See their Fig. 5(f) for mass-dependent limits.
53  BANERJEE 2019 is an update of BANERJEE 2018A. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 MeV. See their Fig. 3 for mass-dependent limits.
54  BHOONAH 2019 examine heating of Galactic Center gas clouds by hidden photon dark matter. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $10^{-12}$ eV. See their Fig. 2 for mass-dependent limits.
55  BRUN 2019 is analogous to SUZUKI 2015 . The limit is derived under an assumption that hidden photons constitute the local dark matter density $\rho _{\gamma '}$ = 0.3 GeV/cm${}^{3}$.
56  CORTINA-GIL 2019 look for an invisible hidden photon in the reaction ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ( ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}$ ${{\mathit \gamma}^{\,'}}$ ). The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $62.5 - 65$ MeV. See their Figs. 6 and 7 for mass-dependent limits.
57  DANILOV 2019 examined the hidden photon production in nuclear reactors, correctly taking account of the effective photon mass in the reactor and detector. The limit gets weaker for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ less than the effective photon mass in proportion to 1/${{\mathit m}^{2}}_{{{\mathit \gamma}^{\,'}}}$. See their Fig. 1 for mass-dependent limits.
58  HOCHBERG 2019 look for the absorption signal of hidden photon dark matter by using superconducting-nanowire single-photon detectors. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 1 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 4 for mass-dependent limits.
59  KOPYLOV 2019 look for hidden-photon dark matter using a counter with an aluminum cathode and derive limits assuming it constitute all the local dark matter. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12 eV. See their Fig. 7 for mass-dependent limits.
60  KOVETZ 2019 examine heating of the early Universe plasma by hidden photon dark matter, and derive the limits by requiring that the cosmic mean 21 cm brightness temperature relative to the CMB temperature satisfy T$_{21}$ $>$ $-100$ mK. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $2 \times 10^{-14}$ eV. See their Fig. 3 for mass-dependent limits.
61  NGUYEN 2019 look for hidden photon dark matter with a resonant cavity, and set limits $\sim{}10^{-12}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.2 - 2.07\mu $eV. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.3 $\mu $eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 19 for mass-dependent limits.
62  ABE 2018F is an update of ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 40 keV. See their Fig. 5 for mass-dependent limits.
63  ADRIAN 2018 look for a hidden photon resonance in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ). The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 40 MeV. See their Fig. 4 for mass-dependent limits.
64  ANASTASI 2018B look for a hidden photon resonance in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ). The quoted limit is obtained by combining the result of ANASTASI 2016 and it applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $519 - 987$ MeV. See their Fig. 9 for mass-dependent limits.
65  ARMENGAUD 2018 is analogous to ABE 2014F. The quoted limits applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.6 keV. See the right panel of Fig. 5 for mass-dependent limits.
66  BANERJEE 2018 look for hidden photons produced in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ), and exclude $9.2 \times 10^{-5}{ {}\lesssim{} }$ $\chi $ ${ {}\lesssim{} }$ $0.01$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 23$ MeV. They also set a limit on the electron coupling to a 16.7 MeV gauge boson suggested by the ATOMKI (KRASZNAHORKAY 2016 ) experiment. See their Fig. 3 for mass-dependent limits.
67  BANERJEE 2018A look for invisible decays of hidden photons produced in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$ . The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 MeV. See their Fig. 15 for mass-dependent limits.
68  KNIRCK 2018 is analogous to SUZUKI 2015 . See their Fig. 5 for mass-dependent limits.
69  ABGRALL 2017 is analogous to ABE 2014F using the MAJORANA DEMONSTRATOR. See their Fig. 3 for limits between 6 keV $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 97 keV.
70  ABLIKIM 2017AA look for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ) . Limits between $10^{-3}$ and $10^{-4}$ are obtained (see their Fig. 3).
71  ANGLOHER 2017 is analogous to ABE 2014F. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.7 keV. See their Fig. 8 for mass-dependent limits.
72  BANERJEE 2017 look for invisible decays of hidden photons produced in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$ . The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 MeV. See their Fig. 3 for mass-dependent limits.
73  CHANG 2017 examine the hidden photon emission from SN1987A, including the effects of finite temperature and density on $\chi $ and obtain limits $\chi $ (${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/MeV) ${ {}\lesssim{} }$ $3 \times 10^{-9}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 15 MeV and $\chi $ ${ {}\lesssim{} }$ $10^{-9}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $15 - 120$ MeV.
74  DUBININA 2017 look for ${{\mathit \mu}^{+}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\overline{\mathit \nu}}_{{\mu}}}{{\mathit \nu}_{{e}}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ) in a nuclear photoemulsion. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.1 MeV. Limits between $4.5 \times 10^{-3}$ and $E-2$ are obtained (see their Fig. 3).
75  LEES 2017E look for invisible decays of hidden photons produced in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ . See their Fig. 5 for limits in the mass range ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{}\leq{}$ 8 GeV.
76  AAD 2016AG look for hidden photons promptly decaying into collimated electrons and/or muons, assuming that they are produced in the cascade decays of squarks or the Higgs boson. See their Fig. 10 and Fig.13 for their limits on the cross section times branching fractions.
77  ANASTASI 2016 look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}$ ${{\mathit \pi}^{-}}$ in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ . Limits between $4.3 \times 10^{-3}$ and $4.4 \times 10^{-4}$ are obtained for 527 $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 987 MeV (see their Fig. 9).
78  KHACHATRYAN 2016 look for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in a dark SUSY scenario where the SM-like Higgs boson decays into a pair of the visible lightest neutralinos with mass 10 GeV, both of which decay into ${{\mathit \gamma}^{\,'}}$ and a hidden neutralino with mass 1 GeV. See the right panel in their Fig. 2.
79  AAD 2015CD look for ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ with the ATLAS detector at LHC and find $\chi $ $<$ $4 - 0.17$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $15 - 55$ GeV. See their Fig. 6.
80  ADARE 2015 look for a hidden photon in ${{\mathit \pi}^{0}}$, ${{\mathit \eta}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ at the PHENIX experiment. See their Fig. 4 for mass-dependent limits.
81  AN 2015A derived limits from the absence of ionization signals in the XENON10 and XENON100 experiments, assuming hidden photons constitute all the local dark matter. Their best limit is $\chi $ $<$ $1.3 \times 10^{-15}$ at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 18 eV. See their Fig. 1 for mass-dependent limits.
82  ANASTASI 2015 look for a production of a hidden photon and a hidden Higgs boson with the KLOE detector at DA$\Phi $NE, where the hidden photon decays into a pair of muons and the hidden Higgs boson lighter than ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ escape detection. See their Figs. 6 and 7 for mass-dependent limits on a product of the hidden fine structure constant and the kinetic mixing.
83  ANASTASI 2015A look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit \gamma}}$ . Limits between $1.7 \times 10^{-3}$ and $0.01$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $5 - 320$ MeV (see their Fig. 7).
84  BATLEY 2015A look for ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ) at the NA48/2 experiment. Limits between $4.2 \times 10^{-4}$ and $8.8 \times 10^{-3}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $9 - 120$ MeV (see their Fig. 4).
85  JAEGLE 2015 look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , or ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ in the dark Higgstrahlung channel, ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit H}^{\,'}}$ ( ${{\mathit H}^{\,'}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ ) at the BELLE experiment. They set limits on a product of the branching fraction and the Born cross section as well as a product of the hidden fine structure constant and the kinetic mixing. See their Figs. 3 and 4.
86  KAZANAS 2015 set limits by studying the decay of hidden photons ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ inside and near the progenitor star of SN1987A. See their Fig. 6 for mass-dependent limits.
87  SUZUKI 2015 looked for hidden-photon dark matter with a dish antenna and derived limits assuming they constitute all the local dark matter. Their limits are $\chi $ $<$ $6 \times 10^{-12}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.9 - 4.3$ eV. See their Fig. 7 for mass-dependent limits.
88  VINYOLES 2015 performed a global fit analysis based on helioseismology and solar neutrino observations, and set the limits $\chi {\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ $1.8 \times 10^{-12}$ eV for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $3 \times 10^{-5} - 8$ eV. See their Fig. 11.
89  ABE 2014F look for the photoelectric-like interaction in the XMASS detector assuming the hidden photon constitutes all the local dark matter. Limits between $2 \times 10^{-13}$ and $1 \times 10^{-12}$ are obtained, where the relation $\chi {}^{2}$ = $\alpha $'/$\alpha $ is used to translate the original bound on the ratio of the hidden and EM fine-structure constants. See their Fig. 3 for mass-dependent limits.
90  AGAKISHIEV 2014 look for hidden photons ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ at the HADES experiment, and set limits on ${{\mathit \chi}}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.02 - 0.6$ GeV. See their Fig. 5 for mass-dependent limits.
91  BABUSCI 2014 look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ ${{\mathit \mu}^{-}}$ in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \gamma}}$ . Limits between $4 \times 10^{-3}$ and $9.0 \times 10^{-4}$ are obtained for 520 MeV $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}<$ 980 MeV (see their Fig. 7).
92  BATELL 2014 derived limits from the electron beam dump experiment at SLAC (E-137) by searching for events with recoil electrons by sub-GeV dark matter produced from the decay of the hidden photon. Limits at the level of are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-3} - 1$ GeV, depending on the dark matter mass and the hidden gauge coupling (see their Fig. 2).
93  BLUEMLEIN 2014 analyzed the beam dump data taken at the U-70 accelerator to look for ${{\mathit \gamma}^{\,'}}$-bremsstrahlung and the subsequent decay into muon pairs and hadrons. See their Fig. 4 for mass-dependent excluded region.
94  FRADETTE 2014 studied effects of decay of relic hidden photons on BBN and CMB to set constraints on very small values of the kinetic mixing. See their Figs. 4 and 7 for mass-dependent excluded regions.
95  LEES 2014J look for hidden photons in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}$ ${{\mathit \mu}^{-}}$ ). Limits at the level of $10^{-4} - 10^{-3}$ are obtained for 0.02 GeV $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 10.2 GeV. See their Fig. 4 for mass-dependent limits.
96  MERKEL 2014 look for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ at the A1 experiment at the Mainz Microtron (MAMI). See their Fig. 3 for mass-dependent limits.
97  AN 2013B examined the stellar production of hidden photons, correcting an important error of the production rate of the longitudinal mode which now dominates. See their Fig. 2 for mass-dependent limits based on solar energy loss.
98  AN 2013C use the solar flux of hidden photons to set a limit on the atomic ionization rate in the XENON10 experiment. They find $\chi $ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ $3 \times 10^{-12}$ eV for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}<$ 1 eV. See their Fig. 2 for mass-dependent limits.
99  DIAMOND 2013 analyzed the beam dump data taken at the SLAC millicharge experiment to constrain a hidden photon invisibly decaying into lighter long-lived particles, which undergo elastic scattering off nuclei in the detector. Limits between $8 \times 10^{-4} - 0.02$ are obtained. The quoted limit is applied when the dark gauge coupling is set equal to the electromagnetic coupling. See their Fig.4 for mass-dependent limits.
100  GNINENKO 2013 used the data taken at the SINDRUM experiment to constrain the decay, ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ) to derive limits. See their Fig. 2 for their mass-dependent excluded region.
101  HORVAT 2013 look for hidden-photo-electric effect in HPGe detectors induced by solar hidden photons. See their Fig. 3 for mass-dependent limits.
102  INADA 2013 search for hidden photons using an intense X-ray beamline at SPring-8. See their Fig. 4 for mass-dependent limits.
103  MIZUMOTO 2013 look for solar hidden photons. See their Fig. 5 for mass-dependent limits.
104  PARKER 2013 look for hidden photons using a cryogenic resonant microwave cavity. See their Fig.5 for mass-dependent limits.
105  PARKER 2013 derived a limit for the hidden photon CDM with a randomly oriented hidden photon field.
106  REDONDO 2013 examined the solar emission of hidden photons including the enhancement factor for the longitudinal mode pointed out by AN 2013B, and also updated stellar-energy loss arguments. See their Fig.3 for mass-dependent limits, including a review of the currently best limits from other arguments.
107  GNINENKO 2012A obtained bounds on B( ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ ) $\cdot{}$ B( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ) from the NOMAD and PS191 neutrino experiments, and derived limits between $8 \times 10^{-8} - 2 \times 10^{-4}$. See their Fig.4 for mass-dependent excluded regions.
108  GNINENKO 2012B used the data taken at the CHARM experiment to constrain the decay, ${{\mathit \eta}}({{\mathit \eta}^{\,'}}$) $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ), and derived limits between $1 \times 10^{-7} - 1 \times 10^{-4}$. See their Fig.4 for mass-dependent excluded region.
109  ABRAHAMYAN 2011 look for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in the electron-nucelon fixed-target experiment at the Jefferson Laboratory (APEX). See their Fig. 5 for mass-dependent limits.
110  BLUEMLEIN 2011 analyzed the beam dump data taken at the U-70 accelerator to look for ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ ( ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ). See their Fig. 5 for mass-dependent limits.
111  BJORKEN 2009 analyzed the beam dump data taken at E137, E141, and E774 to constrain a hidden photon produced by bremsstrahlung, subsequently decaying into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , and derived limits between $10^{-7}$ and $E-2$. See their Fig. 1 for mass-dependent excluded region.
112  BJORKEN 2009 required the energy loss in the ${{\mathit \gamma}^{\,'}}$ emission from the core of SN1987A not to exceed $10^{53}$ erg/s, and derived limits between $5 \times 10^{-9}$ and $2 \times 10^{-6}$. See their Fig. 1 for mass-dependent excluded region.
References:
AAD 2022J
JHEP 2203 041 Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV
AAD 2022S
EPJ C82 105 Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 $\text {TeV}$ with the ATLAS detector
APRILE 2022
PR D106 022001 Emission of single and few electrons in XENON1T and limits on light dark matter
APRILE 2022B
PRL 129 161805 Search for New Physics in Electronic Recoil Data from XENONnT
BATTAGLIERI 2022
PR D106 072011 Dark matter search with the BDX-MINI experiment
BOLTON 2022
PRL 129 211102 Comparison of Low-Redshift Lyman-? Forest Observations to Hydrodynamical Simulations with Dark Photon Dark Matter
CERVANTES 2022
PRL 129 201301 Search for 70???eV Dark Photon Dark Matter with a Dielectrically Loaded Multiwavelength Microwave Cavity
CHILES 2022
PRL 128 231802 New Constraints on Dark Photon Dark Matter with Superconducting Nanowire Detectors in an Optical Haloscope
HOCHBERG 2022
PR D106 112005 New constraints on dark matter from superconducting nanowires
LEES 2022
PRL 128 021802 Search for Darkonium in $e^+e^-$ Collisions
LU 2022
PR D105 123017 Probing dark gauge boson with observations from neutron stars
MANENTI 2022
PR D105 052010 Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode
THOMAS 2022
PR D105 L031901 Constraints on the dark photon from deep inelastic scattering
TUMASYAN 2022N
JHEP 2204 062 Search for long-lived particles decaying into muon pairs in proton-proton collisions at $ \sqrt{s} $ = 13 TeV collected with a dedicated high-rate data stream
TUMASYAN 2022AH
EPJ C82 290 Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton?proton collisions at $\sqrt{s}=13\,\text {TeV} $
WU 2022A
PR D106 L081101 Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release
ANDREEV 2021A
PR D104 L091701 Improved exclusion limit for light dark matter from e+e- annihilation in NA64
ANDREEV 2021
PRL 126 211802 Constraints on New Physics in Electron $g-2$ from a Search for Invisible Decays of a Scalar, Pseudoscalar, Vector, and Axial Vector
BI 2021
PR D103 043018 Axion and dark photon limits from Crab Nebula high energy gamma-rays
CAZZANIGA 2021
EPJ C81 959 Probing the explanation of the muon (g-2) anomaly and thermal light dark matter with the semi-visible dark photon channel
DIXIT 2021
PRL 126 141302 Searching for Dark Matter with a Superconducting Qubit
GHOSH 2021
PR D104 092016 Searching for dark photons with existing haloscope data
GODFREY 2021
PR D104 012013 Search for dark photon dark matter: Dark E field radio pilot experiment
KOPYLOV 2021A
PPN 52 31
KRIBS 2021
PRL 126 011801 Breaking up the Proton: An Affair with Dark Forces
SCHMIDT 2021
PR D104 015008 Constraints on the kinetic mixing parameter ?2 for the light dark photons from dilepton production in heavy-ion collisions in the few-GeV energy range
TSAI 2021
PRL 126 181801 Dark Photon and Muon $g-2$ Inspired Inelastic Dark Matter Models at the High-Energy Intensity Frontier
AAIJ 2020C
PRL 124 041801 Search for $A'\to\mu^+\mu^-$ Decays
ABLIKIM 2020AB
PR D102 052005 Search for intermediate resonances and dark gauge bosons in $J/\psi\rightarrow\gamma\pi^0\eta^{\prime}$
AGOSTINI 2020
PRL 125 011801 The first search for bosonic super-WIMPs with masses up to 1 MeV/c$^2$ with GERDA
AMARAL 2020
PR D102 091101 Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector
AN 2020
PR D102 115022 New limits on dark photons from solar emission and keV scale dark matter
ANDRIANAVALOMAHEFA 2020
PR D102 042001 Limits from the Funk Experiment on the Mixing Strength of Hidden-Photon Dark Matter in the Visible and Near-Ultraviolet Wavelength Range
APRILE 2020
PR D102 072004 Excess electronic recoil events in XENON1T
ARALIS 2020
PR D101 052008 Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment
Also
PR D103 039901 (errat.) Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment
ARGUELLES 2020
JHEP 2002 190 Searches for Atmospheric Long-Lived Particles
ARNAUD 2020
PRL 125 141301 First germanium-based constraints on sub-MeV Dark Matter with the EDELWEISS experiment
BANERJEE 2020
PR D101 071101 Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into $e^+e^-$ pairs
BARAK 2020
PRL 125 171802 SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD
KRASNIKOV 2020
MPL A35 2050116 Implications of last NA64 results and the electron $g_{e}-2$ anomaly for the X(16.7) boson survival
SHE 2020
PRL 124 111301 Direct Detection Constraints on Dark Photons with the CDEX-10 Experiment at the China Jinping Underground Laboratory
SIRUNYAN 2020AQ
PRL 124 131802 Search for a Narrow Resonance Lighter than 200 GeV Decaying to a Pair of Muons in Proton-Proton Collisions at $\sqrt{s} =$ TeV
TOMITA 2020
JCAP 2009 012 Search for hidden-photon cold dark matter using a K-band cryogenic receiver
WANG 2020A
PR D101 052003 Improved limits on solar axions and bosonic dark matter from the CDEX-1B experiment using the profile likelihood ratio method
AABOUD 2019G
PR D99 012001 Search for long-lived particles in final states with displaced dimuon vertices in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector
ABLIKIM 2019A
PR D99 012006 Study of the Dalitz decay $J/\psi \to e^+e^- \eta$
Also
PR D104 099901 (errat.) Study of the Dalitz decay $J/\psi \to e^+e^- \eta$
ABLIKIM 2019H
PR D99 012013 Measurement of $\mathcal{B}(J/\psi \to \eta' e^+ e^-)$ and search for a dark photon
AGUILAR-AREVALO 2019A
PRL 123 181802 Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB
APRILE 2019D
PRL 123 251801 Light Dark Matter Search with Ionization Signals in XENON1T
BANERJEE 2019
PRL 123 121801 Dark matter search in missing energy events with NA64
BHOONAH 2019
PR D100 023001 Galactic Center gas clouds and novel bounds on ultralight dark photon, vector portal, strongly interacting, composite, and super-heavy dark matter
BRUN 2019
PRL 122 201801 Direct Searches for Hidden-Photon Dark Matter with the SHUKET Experiment
CORTINA-GIL 2019
JHEP 1905 182 Search for production of an invisible dark photon in $\pi^0$ decays
DANILOV 2019
PRL 122 041801 Constraints on hidden photons produced in nuclear reactors
HOCHBERG 2019
PRL 123 151802 Detecting Sub-GeV Dark Matter with Superconducting Nanowires
KOPYLOV 2019
JCAP 1907 008 Results from a Hidden Photon Dark Matter Search Using a Multi-Cathode Counter
KOVETZ 2019
PR D99 123511 Bounds on ultralight hidden-photon dark matter from observation of the 21 cm signal at cosmic dawn
NGUYEN 2019
JCAP 1910 014 First results from the WISPDMX radio frequency cavity searches for hidden photon dark matter
ABE 2018F
PL B787 153 Search for dark matter in the form of hidden photons and axion-like particles in the XMASS detector
ADRIAN 2018
PR D98 091101 Search for a dark photon in electroproduced $e^{+}e^{-}$ pairs with the Heavy Photon Search experiment at JLab
ANASTASI 2018B
PL B784 336 Combined limit on the production of a light gauge boson decaying into $\mu^+\mu^-$ and $\pi^+\pi^-$
ARMENGAUD 2018
PR D98 082004 Searches for electron interactions induced by new physics in the EDELWEISS-III Germanium bolometers
BANERJEE 2018A
PR D97 072002 Search for vector mediator of Dark Matter production in invisible decay mode
BANERJEE 2018
PRL 120 231802 Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN
KNIRCK 2018
JCAP 1811 031 First results from a hidden photon dark matter search in the meV sector using a plane-parabolic mirror system
ABGRALL 2017
PRL 118 161801 New limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator
ABLIKIM 2017AA
PL B774 252 Dark Photon Search in the Mass Range between 1.5 and 3.4 ${\mathrm {GeV/}}\mathit c{}^{2}$
ANGLOHER 2017
EPJ C77 299 Dark-Photon Search using Data from CRESST-II Phase 2
BANERJEE 2017
PRL 118 011802 Search for Invisible Decays of sub-GeV Dark Photons in Missing-Energy Events at the CERN SPS
CHANG 2017
JHEP 1701 107 Revisiting Supernova 1987A Constraints on Dark Photons
DUBININA 2017
PAN 80 461 Search for a Light Dark Photon in Muonium Decay
LEES 2017E
PRL 119 131804 Search for Invisible Decays of a Dark Photon Produced in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at BaBar
AAD 2016AG
JHEP 1602 062 A Search for Prompt Lepton-Jets in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
ANASTASI 2016
PL B757 356 Limit on the Production of a New Vector Boson in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit U}}{{\mathit \gamma}}$ , ${{\mathit U}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ with the KLOE Experiment
KHACHATRYAN 2016
PL B752 146 A Search for Pair Production of New Light Bosons Decaying into Muons
AAD 2015CD
PR D92 092001 Search for New Light Gauge Bosons in Higgs Boson Decays to Four-Lepton Final States in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector at the LHC
ADARE 2015
PR C91 031901 Search for Dark Photons from Neutral Meson Decays in ${{\mathit p}}$ + ${{\mathit p}}$ and ${{\mathit d}}$ + ${}^{}\mathrm {Au}$ Collisions at $\sqrt {s_{NN} }$ = 200 GeV
AN 2015A
PL B747 331 Direct Detection Constraints on Dark Photon Dark Matter
ANASTASI 2015A
PL B750 633 Limit on the Production of a Low-Mass Vector Boson in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit U}}{{\mathit \gamma}}$ , ${{\mathit U}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ with the KLOE Experiment
ANASTASI 2015
PL B747 365 Search for Dark Higgsstrahlung in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and Missing Energy Events with the KLOE Experiment
BATLEY 2015A
PL B746 178 Search for the Dark Photon in ${{\mathit \pi}^{0}}$ Decays
JAEGLE 2015
PRL 114 211801 Search for the Dark Photon and the Dark Higgs Boson at Belle
KAZANAS 2015
NP B890 17 Supernova Bounds on the Dark Photon using its Electromagnetic Decay
SUZUKI 2015
JCAP 1509 042 Experimental Search for Hidden Photon CDM in the eV Mass Range with a Dish Antenna
VINYOLES 2015
JCAP 1510 015 New Axion and Hidden Photon Constraints from a Solar Data Global Fit
ABE 2014F
PRL 113 121301 Search for Bosonic Superweakly Interacting Massive Dark Matter Particles with the XMASS-I Detector
AGAKISHIEV 2014
PL B731 265 Searching a Dark Photon with HADES
BABUSCI 2014
PL B736 459 Search for Light Vector Boson Production in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \gamma}}$ Interactions with the KLOE Experiment
BATELL 2014
PRL 113 171802 Strong Constraints on Sub-GeV Dark Sectors from SLAC Beam Dump E137
BLUEMLEIN 2014
PL B731 320 New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data
FRADETTE 2014
PR D90 035022 Cosmological Constraints on Very Dark Photons
LEES 2014J
PRL 113 201801 Search for a Dark Photon in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at BaBar
MERKEL 2014
PRL 112 221802 Search at the Mainz Microtron for Light Massive Gauge Bosons Relevant for the Muon $\mathit g−$2 Anomaly
AN 2013B
PL B725 190 New Stellar Constraints on Dark Photons
AN 2013C
PRL 111 041302 Dark Matter Detectors as Dark Photon Helioscopes
DIAMOND 2013
PRL 111 221803 Searching for Light Dark Matter with the SLAC Millicharge Experiment
GNINENKO 2013
PR D87 035030 Constraints on Dark Photons from ${{\mathit \pi}^{0}}$ Decays
HORVAT 2013
PL B721 220 Constraining Solar Hidden Photons Using HPGe Detector
INADA 2013
PL B722 301 Results of a Search for Paraphotons with Intense X-ray Beams at SPring-8
MIZUMOTO 2013
JCAP 1307 013 Experimental Search for Solar Hidden Photons in the eV Energy Range using Kinetic Mixing with Photons
PARKER 2013
PR D88 112004 Cryogenic Resonant Microwave Cavity Searches for Hidden Sector Photons
REDONDO 2013
JCAP 1308 034 Solar Constraints on Hidden Photons re-Visited
GNINENKO 2012B
PL B713 244 Constraints on sub-GeV Hidden Sector Gauge Bosons from a Search for Heavy Neutrino Decays
GNINENKO 2012A
PR D85 055027 Stringent Limits on the ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit X}}$ , ${{\mathit X}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Decay from Neutrino Experiments and Constraints on New Light Gauge Bosons
ABRAHAMYAN 2011
PRL 107 191804 Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment
BLUEMLEIN 2011
PL B701 155 New Exclusion Limits for Dark Gauge Forces from Beam-Dump Data
BJORKEN 2009
PR D80 075018 New Fixed-Target Experiments to Search for Dark Gauge Forces