${{\mathit H}}$ SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The ${{\mathit H}}$ signal strength in a particular final state ${{\mathit x}}{{\mathit x}}$ is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value, $\sigma $ $\cdot{}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}$ ) $/$ ($\sigma $ $\cdot{}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit x}}{{\mathit x}}$ ))$_{{\mathrm {SM}}}$, for the specified mass value of ${{\mathit H}}$. For the SM predictions, see DITTMAIER 2011 , DITTMAIER 2012 , and HEINEMEYER 2013A. Results for fiducial and differential cross sections are also listed below.

${{\mathit b}}{{\overline{\mathit b}}}$ Final State

INSPIRE   PDGID:
S126SBB
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ 0.99 \pm0.12}$ OUR AVERAGE
$1.05$ ${}^{+0.22}_{-0.21}$ 1
CMS
2022
CMS ${{\mathit p}}{{\mathit p}}$ , 13 TeV
$1.02$ ${}^{+0.12}_{-0.11}$ ${}^{+0.14}_{-0.13}$ 2
AAD
2021AB
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV, 139 fb${}^{-1}$
$0.95$ $\pm0.32$ ${}^{+0.20}_{-0.17}$ 3
AAD
2021AJ
ATLS VBF, ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit p}}{{\mathit p}}$ , 13 TeV, 126 fb${}^{-1}$
$0.70$ ${}^{+0.29}_{-0.27}$ 4, 5
AAD
2016AN
LHC ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$1.59$ ${}^{+0.69}_{-0.72}$ 6
AALTONEN
2013M
TEVA ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , 1.96 TeV
• • We do not use the following data for averages, fits, limits, etc. • •
$0.8$ $\pm3.2$ 7
AAD
2022X
ATLS boosted ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit p}}{{\mathit p}}$ , 13 TeV
$0.95$ $\pm0.18$ ${}^{+0.19}_{-0.18}$ 2
AAD
2021AB
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV, 139 fb${}^{-1}$
$1.08$ $\pm0.17$ ${}^{+0.18}_{-0.15}$ 2
AAD
2021AB
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV, 139 fb${}^{-1}$
$0.72$ ${}^{+0.29}_{-0.28}$ ${}^{+0.26}_{-0.22}$ 8
AAD
2021H
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , boosted ${{\mathit W}}$ $/$ ${{\mathit Z}}$ , 13 TeV, 139 fb${}^{-1}$
$1.3$ $\pm1.0$ 9
AAD
2021M
ATLS VBF+${{\mathit \gamma}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit p}}{{\mathit p}}$ , 13 TeV, 132 fb${}^{-1}$
$3.7$ $\pm1.2$ ${}^{+0.11}_{-0.9}$ 10
SIRUNYAN
2020BL
CMS boosted ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit p}}{{\mathit p}}$ , 13 TeV
11
AABOUD
2019U
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV, cross sections
$1.12$ $\pm0.29$ 12
SIRUNYAN
2019AT
CMS ${{\mathit p}}{{\mathit p}}$ , 13 TeV
$1.16$ ${}^{+0.27}_{-0.25}$ 13
AABOUD
2018BN
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV, 79.8 fb${}^{-1}$
$0.98$ ${}^{+0.22}_{-0.21}$ 14
AABOUD
2018BN
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 7, 8, 13 TeV
$1.01$ $\pm0.20$ 15
AABOUD
2018BN
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , ggF, VBF, ${{\mathit V}}{{\mathit H}}$ , ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ 7, 8, 13 TeV
$2.5$ ${}^{+1.4}_{-1.3}$ 16, 17
AABOUD
2018BQ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , VBF, ggF, ${{\mathit V}}{{\mathit H}}$ , ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ , 13 TeV
$3.0$ ${}^{+1.7}_{-1.6}$ 16, 18
AABOUD
2018BQ
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , VBF, 13 TeV
19
AALTONEN
2018C
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , 1.96 TeV
$1.19$ ${}^{+0.40}_{-0.38}$ 20
SIRUNYAN
2018AE
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV
$1.06$ ${}^{+0.31}_{-0.29}$ 21
SIRUNYAN
2018AE
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 7, 8, 13 TeV
$1.06$ $\pm0.26$ 22
SIRUNYAN
2018DB
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV, 77.2 fb${}^{-1}$
$1.01$ $\pm0.22$ 23
SIRUNYAN
2018DB
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit H}}{{\mathit Z}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 7, 8, 13 TeV
$1.04$ $\pm0.20$ 24
SIRUNYAN
2018DB
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , ggF, VBF, ${{\mathit V}}{{\mathit H}}$ , ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ 7, 8, 13 TeV
$2.3$ ${}^{+1.8}_{-1.6}$ 25
SIRUNYAN
2018E
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , boosted, 13 TeV
$1.20$ ${}^{+0.24}_{-0.23}$ ${}^{+0.34}_{-0.28}$ 26
AABOUD
2017BA
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 13 TeV, 36.1 fb${}^{-1}$
$0.90$ $\pm0.18$ ${}^{+0.21}_{-0.19}$ 27
AABOUD
2017BA
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , 7, 8, 13 TeV
$-0.8$ $\pm1.3$ ${}^{+1.8}_{-1.9}$ 28
AABOUD
2016X
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , VBF, 8 TeV
$0.62$ $\pm0.37$ 5
AAD
2016AN
ATLS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$0.81$ ${}^{+0.45}_{-0.43}$ 5
AAD
2016AN
CMS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$0.63$ ${}^{+0.31}_{-0.30}$ ${}^{+0.24}_{-0.23}$ 29
AAD
2016K
ATLS ${{\mathit p}}{{\mathit p}}$ , 7, 8 TeV
$0.52$ $\pm0.32$ $\pm0.24$ 30
AAD
2015G
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7, 8 TeV
$2.8$ ${}^{+1.6}_{-1.4}$ 31
KHACHATRYAN
2015Z
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , VBF, 8 TeV
$1.03$ ${}^{+0.44}_{-0.42}$ 32
KHACHATRYAN
2015Z
CMS ${{\mathit p}}{{\mathit p}}$ , 8 TeV, combined
$1.0$ $\pm0.5$ 33
CHATRCHYAN
2014AI
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7, 8 TeV
$1.72$ ${}^{+0.92}_{-0.87}$ 34
AALTONEN
2013L
CDF ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , 1.96 TeV
$1.23$ ${}^{+1.24}_{-1.17}$ 35
ABAZOV
2013L
D0 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit X}}$ , 1.96 TeV
$0.5$ $\pm2.2$ 36
AAD
2012AI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7 TeV
37
AALTONEN
2012T
TEVA ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 1.96 TeV
$0.48$ ${}^{+0.81}_{-0.70}$ 38
CHATRCHYAN
2012N
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ $/$ ${{\mathit Z}}{{\mathit X}}$ , 7, 8 TeV
1  CMS 2022 report combined results (see their Extended Data Table 2) using up to 138 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV, assuming ${\mathit m}_{{{\mathit H}}}$ = 125.38 GeV. See their Fig. 2 right.
2  AAD 2021AB search for ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ (${{\mathit V}}$ = ${{\mathit W}}$ , ${{\mathit Z}}$ ) using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The results are given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV. Cross sections are given in their Table 13 and Fig. 7, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 9.
3  AAD 2021AJ present measurements of ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ in the VBF production mode. The inclusive VBF cross sections with and without the branching ratio of ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ are $2.07$ $\pm0.70$ ${}^{+0.46}_{-0.37}$ fb and $3.56$ $\pm1.21$ ${}^{+0.80}_{-0.64}$ fb, respectively. The latter is obtained assuming the SM value of B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = 0.5809 and ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
4  AAD 2016AN perform fits to the ATLAS and CMS data at $\mathit E_{{\mathrm {cm}}}$ = 7 and 8 TeV. The signal strengths for individual production processes are $1.0$ $\pm0.5$ for ${{\mathit W}}{{\mathit H}}$ production, $0.4$ $\pm0.4$ for ${{\mathit Z}}{{\mathit H}}$ production, and $1.1$ $\pm1.0$ for ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ production.
5  AAD 2016AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
6  AALTONEN 2013M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb${}^{-1}$ and 9.7 fb${}^{-1}$, respectively, of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
7  AAD 2022X measure cross sections using a boosted ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ with large-radius jets. The data is 136 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. All the results are given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV. The inclusive signal strength is given using data with a ${{\mathit H}}$ candidate jet $p_T>$250 GeV. The fiducial ${{\mathit H}}$ production cross section ($p_T({{\mathit H}})>$450 GeV and $\vert $y(${{\mathit H}})\vert <$2) is $<$115 fb (95$\%$ CL) and the upper limits for other four different $p_T$ regions are shown in their Fig 12. The measured fiducial ${{\mathit H}}$ production cross section ($p_T({{\mathit H}})>$1 TeV) is $2.3$ $\pm3.9$(stat)$\pm1.3$(syst)$\pm0.5$(theory) fb.
8  AAD 2021H present measurements of ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ with a boosted vector boson ($p_T$ $>$ 250 GeV) using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Cross sections are given in their Table 6 and Fig. 4, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 5.
9  AAD 2021M search for VBF+${{\mathit \gamma}}$, ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ using 132 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
10  SIRUNYAN 2020BL search for boosted ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ (a ${{\mathit H}}$ candidate jet $p_T>$450 GeV) using 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength corresponds to a significance of 2.5 standard deviations and is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV. A differential fiducial cross section as a function of Higgs boson $p_T$ for ggF is shown in their Fig. 7, assuming the other production modes occur at the expected SM rates. The reported value is $3.7$ $\pm1.2$ ${}^{+0.8}_{-0.7}{}^{+0.8}_{-0.5}$ where the last uncertainty comes from theoretical modeling. We have combined the systematic uncertainties in quadrature.
11  AABOUD 2019U measure cross sections of ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ production as a function of the gauge boson transverse momentum using data of 79.8 fb${}^{-1}$. The kinematic fiducial volumes used is based on the simplified template cross section framework (reduced stage-1). See their Table 3 and Fig. 3.
12  SIRUNYAN 2019AT perform a combine fit to 35.9 fb${}^{-1}$ of data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
13  AABOUD 2018BN search for ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ (${{\mathit V}}$ = ${{\mathit W}}$ , ${{\mathit Z}}$ ) using 79.8 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength corresponds to a significance of 4.9 standard deviations and is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
14  AABOUD 2018BN combine results of 79.8 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV with results of ${{\mathit V}}{{\mathit H}}$ at $\mathit E_{{\mathrm {cm}}}$ = 7 and 8 TeV.
15  AABOUD 2018BN combine results of ${{\mathit V}}{{\mathit H}}$ at $\mathit E_{{\mathrm {cm}}}$ = 7, 8 and 13 TeV with results of VBF (+gluon fusion) and ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ at $\mathit E_{{\mathrm {cm}}}$ = 7, 8, and 13 TeV to perform a search for the ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.4 standard deviations.
16  AABOUD 2018BQ search for ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ produced through vector-boson fusion (VBF) and VBF+${{\mathit \gamma}}$ with 30.6 fb${}^{-1}$ ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
17  The signal strength is measured including all production modes (VBF, ggF, ${{\mathit V}}{{\mathit H}}$ , ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ ).
18  The signal strength is measured for VBF-only and others (ggF, ${{\mathit V}}{{\mathit H}}$ , ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ ) are constrained to Standard Model expectations with uncertainties described in their Section VIII B.
19  AALTONEN 2018C use 5.4 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The upper limit at 95$\%$ CL on ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ is 33 times the SM predicion, which corresponds to a cross section of 40.6 pb.
20  SIRUNYAN 2018AE use 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength corresponds to 3.3 standard deviations and is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
21  SIRUNYAN 2018AE combine the result of 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV with the results obtained from data of up to 5.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 18.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV (CHATRCHYAN 2014AI and KHACHATRYAN 2015Z). The quoted signal strength corresponds to 3.8 standard deviations and is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
22  SIRUNYAN 2018DB search for ${{\mathit V}}{{\mathit H}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ( ${{\mathit V}}$ = ${{\mathit W}}$ , ${{\mathit Z}}$ ) using 77.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collision data at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength corresponds to a significance of 4.4 standard deviations and is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
23  SIRUNYAN 2018DB combine the result of 77.2 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV with the results obtained from data of up to 5.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 18.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength corresponds to a significance of 4.8 standard deviations and is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
24  SIRUNYAN 2018DB combine results of 77.2 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV with results of gluon fusion (ggF), VBF and ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV, 8 TeV and 13 TeV to perform a search for the ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.6 standard deviations and is given for ${\mathit m}_{{{\mathit H}}}$ = 125.09 GeV.
25  SIRUNYAN 2018E use 35.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV. They measure ${{\mathit \sigma}}\cdot{}{{\mathit B}}$ for gluon fusion production of ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ with $p_T>$450 GeV, $\vert \eta \vert <$2.5 to be $74$ $\pm48$ ${}^{+17}_{-10}$ fb.
26  AABOUD 2017BA use 36.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV. They give ${\mathit \sigma (}$W H${)}\cdot{}{{\mathit B}}$( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = $1.08$ ${}^{+0.54}_{-0.47}$ pb and ${\mathit \sigma (}$Z H${)}\cdot{}{{\mathit B}}$( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = $0.57$ ${}^{+0.26}_{-0.23}$ pb.
27  AABOUD 2017BA combine 7, 8 and 13 TeV analyses. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
28  AABOUD 2016X search for vector-boson fusion production of ${{\mathit H}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 20.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
29  AAD 2016K use up to 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.36 GeV.
30  AAD 2015G use 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 20.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125.36 GeV.
31  KHACHATRYAN 2015Z search for vector-boson fusion production of ${{\mathit H}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in up to 19.8 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
32  KHACHATRYAN 2015Z combined vector boson fusion, ${{\mathit W}}{{\mathit H}}$ , ${{\mathit Z}}{{\mathit H}}$ production, and ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit H}}$ production results. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
33  CHATRCHYAN 2014AI use up to 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 18.9 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV. See also CHATRCHYAN 2014AJ.
34  AALTONEN 2013L combine all CDF results with $9.45 - 10.0$ fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
35  ABAZOV 2013L combine all D0 results with up to 9.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$ = 125 GeV.
36  AAD 2012AI obtain results based on $4.6 - 4.8$ fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The quoted signal strengths are given in their Fig. 10 for ${\mathit m}_{{{\mathit H}}}$ = 126 GeV. See also Fig. 13 of AAD 2012DA.
37  AALTONEN 2012T combine AALTONEN 2012Q, AALTONEN 2012R, AALTONEN 2012S, ABAZOV 2012O, ABAZOV 2012P, and ABAZOV 2012K. An excess of events over background is observed which is most significant in the region ${\mathit m}_{{{\mathit H}}}$ = $120 - 135$ GeV, with a local significance of up to 3.3 $\sigma $. The local significance at ${\mathit m}_{{{\mathit H}}}$ = 125 GeV is 2.8 $\sigma $, which corresponds to (${\mathit \sigma (}$ ${{\mathit H}}{{\mathit W}}{)}$ + ${\mathit \sigma (}$ ${{\mathit H}}{{\mathit Z}}{)}$) $\cdot{}$ B( ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) = ($0.23$ ${}^{+0.09}_{-0.08}$) pb, compared to the Standard Model expectation at ${\mathit m}_{{{\mathit H}}}$ = 125 GeV of $0.12$ $\pm0.01$ pb. Superseded by AALTONEN 2013M.
38  CHATRCHYAN 2012N obtain results based on 5.0 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=7 TeV and 5.1 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$=8 TeV. The quoted signal strength is given for ${\mathit m}_{{{\mathit H}}}$=125.5 GeV. See also CHATRCHYAN 2013Y.
References:
AAD 2022X
PR D105 092003 Constraints on Higgs boson production with large transverse momentum using $H\rightarrow b\bar{b}$ decays in the ATLAS detector
CMS 2022
NAT 607 60 A portrait of the Higgs boson by the CMS experiment ten years after the discovery
AAD 2021AB
EPJ C81 178 Measurements of $WH$ and $ZH$ production in the $H \rightarrow b\bar{b}$ decay channel in $pp$ collisions at 13 TeV with the ATLAS detector
AAD 2021AJ
EPJ C81 537 Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at $\sqrt{s}=13\,\text {TeV}$
AAD 2021M
JHEP 2103 268 Search for Higgs boson production in association with a high-energy photon via vector-boson fusion with decay into bottom quark pairs at $\sqrt{s}$=13 TeV with the ATLAS detector
AAD 2021H
PL B816 136204 Measurement of the associated production of a Higgs boson decaying into $b$-quarks with a vector boson at high transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector
SIRUNYAN 2020BL
JHEP 2012 085 Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at $\sqrt{s} =$ 13 TeV
AABOUD 2019U
JHEP 1905 141 Measurement of VH, $ \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} $ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector
SIRUNYAN 2019AT
EPJ C79 421 Combined measurements of Higgs boson couplings in proton?proton collisions at $\sqrt{s}=13\,\text {Te}\text {V} $
AABOUD 2018BN
PL B786 59 Observation of $H \rightarrow b\bar{b}$ decays and $VH$ production with the ATLAS detector
AABOUD 2018BQ
PR D98 052003 Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in $\sqrt{s} = 13$ $\mathrm{TeV}$ $pp$ collisions with the ATLAS detector
AALTONEN 2018C
PR D98 072002 Search for standard-model Z and Higgs bosons decaying into a bottom-antibottom quark pair in proton-antiproton collisions at 1.96 TeV
SIRUNYAN 2018DB
PRL 121 121801 Observation of Higgs boson decay to bottom quarks
SIRUNYAN 2018AE
PL B780 501 Evidence for the Higgs boson decay to a bottom quark?antiquark pair
SIRUNYAN 2018E
PRL 120 071802 Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair
AABOUD 2017BA
JHEP 1712 024 Evidence for the ${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ Decay with the ATLAS Detector
AABOUD 2016X
JHEP 1611 112 Search for the Standard Model Higgs Boson Produced by Vector-Boson Fusion and Decaying to Bottom Quarks in $\sqrt {s }$ = 8 TeV ${{\mathit p}}{{\mathit p}}$ Collisions with the ATLAS Detector
AAD 2016K
EPJ C76 6 Measurements of the Higgs Boson Production and Decay Rates and Coupling Strengths using ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ = 7 and 8 TeV in the ATLAS Experiment
AAD 2016AN
JHEP 1608 045 Measurements of the Higgs Boson Production and Decay Rates and Constraints on its Couplings from a Combined ATLAS and CMS Analysis of the LHC ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ =7 and 8 TeV
AAD 2015G
JHEP 1501 069 Search for the ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Decay of the Standard Model Higgs Boson in Associated (${{\mathit W}}/{{\mathit Z}}){{\mathit H}}$ Production with the ATLAS Detector
KHACHATRYAN 2015Z
PR D92 032008 Search for the Standard Model Higgs Boson Produced through Vector Boson Fusion and Decaying to ${\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$
CHATRCHYAN 2014AI
PR D89 012003 Search for the Standard Model Higgs Boson Produced in Association with a ${{\mathit W}}$ or a ${{\mathit Z}}$ Boson and Decaying to Bottom Quarks
AALTONEN 2013M
PR D88 052014 Higgs Boson Studies at the Tevatron
AALTONEN 2013L
PR D88 052013 Combination of Searches for the Higgs Boson Using the Full CDF Data Set
ABAZOV 2013L
PR D88 052011 Combined Search for the Higgs Boson with the ${D0}$ Experiment
AAD 2012AI
PL B716 1 Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC
AALTONEN 2012T
PRL 109 071804 Evidence for a Particle Produced in Association with Weak Bosons and Decaying to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatron
CHATRCHYAN 2012N
PL B716 30 Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC