Majoron Searches in Neutrinoless Double $\beta $ Decay

INSPIRE   PDGID:
S029MT
Limits are for the half-life of neutrinoless ${{\mathit \beta}}{{\mathit \beta}}$ decay with a Majoron emission. No experiment currently claims any such evidence. Only the best or comparable limits for each isotope are reported.

$\mathit t_{1/2}$ ($ 10^{21} $ yr) CL$\%$ ISOTOPE TRANSITION METHOD DOCUMENT ID
$ \bf{>7200} $ $\bf{90}$ $\bf{{}^{128}\mathrm {Te}}$ CNTR 1
BERNATOWICZ
1992
• • We do not use the following data for averages, fits, limits, etc. • •
$ >640 $ $90$ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ GERDA 2
AGOSTINI
2022
$ >4300 $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ EXO-200 3
AL-KHARUSI
2021
$ >4.4 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 4
ARNOLD
2019
$ >37 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 5
ARNOLD
2018
$ >420 $ $90$ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ GERDA 6
AGOSTINI
2015A
$ >400 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 7
ARNOLD
2015
$ >1200 $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ EXO-200 8
ALBERT
2014A
$ >2600 $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ KamLAND-Zen 9
GANDO
2012
$ >16 $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 10
ARNOLD
2011
$ >1.9 $ $90$ ${}^{96}\mathrm {Zr}$ 2${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 11
ARGYRIADES
2010
$ >1.52 $ $90$ ${}^{150}\mathrm {Nd}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 12
ARGYRIADES
2009
$ >27 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 13
ARNOLD
2006
$ >15 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 14
ARNOLD
2006
$ >14 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 15
ARNOLD
2004
$ >12 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO-3 16
ARNOLD
2004
$ >2.2 $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ Cryog. det. 17
ARNABOLDI
2003
$ >0.9 $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}2{{\mathit \chi}}$ Cryog. det. 18
ARNABOLDI
2003
$ >8 $ $90$ ${}^{116}\mathrm {Cd}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ CdWO$_{4}$ scint. 19
DANEVICH
2003
$ >0.8 $ $90$ ${}^{116}\mathrm {Cd}$ 0${{\mathit \nu}}2{{\mathit \chi}}$ CdWO$_{4}$ scint. 20
DANEVICH
2003
$ >500 $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ Liquid Xe Scint. 21
BERNABEI
2002D
$ >5.8 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ ELEGANT V 22
FUSHIMI
2002
$ >0.32 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ Liq. Ar ioniz. 23
ASHITKOV
2001
$ >0.0035 $ $90$ ${}^{160}\mathrm {Gd}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ ${}^{160}\mathrm {Gd}_{2}$SiO$_{5}$:Ce 24
DANEVICH
2001
$ >0.013 $ $90$ ${}^{160}\mathrm {Gd}$ 0${{\mathit \nu}}2{{\mathit \chi}}$ ${}^{160}\mathrm {Gd}_{2}$SiO$_{5}$:Ce 25
DANEVICH
2001
$ >2.3 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO 2 26
ARNOLD
2000
$ >0.31 $ $90$ ${}^{96}\mathrm {Zr}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO 2 27
ARNOLD
2000
$ >0.63 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}2{{\mathit \chi}}$ NEMO 2 28
ARNOLD
2000
$ >0.063 $ $90$ ${}^{96}\mathrm {Zr}$ 0${{\mathit \nu}}2{{\mathit \chi}}$ NEMO 2 28
ARNOLD
2000
$ >0.16 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}2{{\mathit \chi}}$ NEMO 2 28
ARNOLD
2000
$ >2.4 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}1{{\mathit \chi}}$ NEMO 2 29
ARNOLD
1998
$ >7.2 $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}2{{\mathit \chi}}$ TPC 30
LUESCHER
1998
$ >7.91 $ $90$ ${}^{76}\mathrm {Ge}$ SPEC 31
GUENTHER
1996
$ >17 $ $90$ ${}^{76}\mathrm {Ge}$ CNTR
BECK
1993
1  BERNATOWICZ 1992 studied double-$\beta $ decays of ${}^{128}\mathrm {Te}$ and ${}^{130}\mathrm {Te}$, and found the ratio $\tau ({}^{130}\mathrm {Te})/\tau ({}^{128}\mathrm {Te}$) = ($3.52$ $\pm0.11$) $ \times 10^{-4}$ in agreement with relatively stable theoretical predictions. The bound is based on the requirement that Majoron-emitting decay cannot be larger than the observed double-beta rate of ${}^{128}\mathrm {Te}$ of ($77$ $\pm4$) $ \times 10^{23}$ year. We calculated 90$\%$ CL limit as ($7.7 - 1.28{\times }0.4=7.2){\times }10^{24}$.
2  AGOSTINI 2022 use 32.8 kg$\cdot{}$yr of GERDA phase 2 data to derive a limit of $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }$ $<$ $1.8 - 4.4 \times 10^{-5}$ on the neutrino-Majoron coupling. The range reflects the author's evaluation of the spread of nuclear matrix elements.
3  AL-KHARUSI 2021 utilize the complete dataset of the EXO-200 experiment, corresponding to an exposure of 234 kg yr, to place a limit on the one Majoron mode of the neutrinoless double beta decay of ${}^{136}\mathrm {Xe}$. Several limits are reported, the one given here corresponds to a spectral index of 1, resulting in a limit of $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $0.4 - 0.9 \times 10^{-5}$ on the Majoron-neutrino coupling constant. The range reflects the spread of the nuclear matrix elements.
4  ARNOLD 2019 uses the NEMO-3 tracking calorimeter to determine limits for the Majoron emitting double beta decay, with spectral index n = 3. The limit corresponds to the range of the ${{\mathit g}_{{ee}}}$ coupling of $0.013 - 0.035$; dependimg on the nuclear matrix elements used.
5  ARNOLD 2018 use the NEMO-3 tracking detector. The limit corresponds to $\langle {{\mathit g}_{{ee}}}\rangle $ $<$ $3.2 - 8.0 \times 10^{-5}$; the range corresponds to different nuclear matrix element calculations.
6  AGOSTINI 2015A analyze a 20.3 kg yr of data set of the GERDA calorimeter to determine $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $3.4 - 8.7 \times 10^{-5}$ on the Majoron-neutrino coupling constant. The range reflects the spread of the nuclear matrix elements.
7  ARNOLD 2015 use the NEMO-3 tracking calorimeter with 3.43 kg yr exposure to determine the limit on Majoron emission. The limit corresponds to $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $1.6 - 3.0 \times 10^{-4}$. The spread reflects different nuclear matrix elements. Supersedes ARNOLD 2006 .
8  ALBERT 2014A utilize 100 kg yr of exposure of the EXO-200 tracking calorimeter to place a limit on the $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $0.8 - 1.7 \times 10^{-5}$ on the Majoron-neutrino coupling constant. The range reflects the spread of the nuclear matrix elements.
9  GANDO 2012 use the KamLAND-Zen detector to obtain the limit on the 0${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission. It implies that the coupling constant $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }<$ $0.8 - 1.6 \times 10^{-5}$ depending on the nuclear matrix elements used.
10  ARNOLD 2011 use the NEMO-3 detector to obtain the reported limit on Majoron emission. It implies that the coupling constant ${{\mathit g}}_{ {{\mathit \nu}} {{\mathit \chi}} }$ $<$ $0.6 - 1.6 \times 10^{-4}$ depending on the nuclear matrix element used. Supercedes ARNABOLDI 2003 .
11  ARGYRIADES 2010 use the NEMO-3 tracking detector and ${}^{96}\mathrm {Zr}$ to derive the reported limit. No limit for the Majoron electron coupling is given.
12  ARGYRIADES 2009 use ${}^{150}\mathrm {Nd}$ data taken with the NEMO-3 tracking detector. The reported limit corresponds to $\langle $ $\mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <$ $1.7 - 3.0 \times 10^{-4}$ using a range of nuclear matrix elements that include the effect of nuclear deformation.
13  ARNOLD 2006 use ${}^{100}\mathrm {Mo}$ data taken with the NEMO-3 tracking detector. The reported limit corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.4 - 1.8){\times }10^{-4}$ using a range of matrix element calculations. Superseded by ARNOLD 2015 .
14  NEMO-3 tracking calorimeter is used in ARNOLD 2006 . Reported half-life limit for ${}^{82}\mathrm {Se}$ corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.66 - 1.9){\times }10^{-4}$ using a range of matrix element calculations. Supersedes ARNOLD 2004 .
15  ARNOLD 2004 use the NEMO-3 tracking detector. The limit corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.5 - 0.9)10^{-4}$ using the matrix elements of SIMKOVIC 1999 , STOICA 2001 and CIVITARESE 2003 . Superseded by ARNOLD 2006 .
16  ARNOLD 2004 use the NEMO-3 tracking detector. The limit corresponds to $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ ($0.7 - 1.6)10^{-4}$ using the matrix elements of SIMKOVIC 1999 , STOICA 2001 and CIVITARESE 2003 .
17  Supersedes ALESSANDRELLO 2000 . Array of TeO$_{2}$ crystals in high resolution cryogenic calorimeter. Some enriched in ${}^{130}\mathrm {Te}$. Derive $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ $<$ $17 - 33 \times 10^{-5}$ depending on matrix element.
18  Supersedes ALESSANDRELLO 2000 . Cryogenic calorimeter search.
19  Limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission of ${}^{116}\mathrm {Cd}$ using enriched CdWO$_{4}$ scintillators. $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <4.6 - 8.1 \times 10^{-5}$ depending on the matrix element. Supersedes DANEVICH 2000 .
20  Limit for the 0${{\mathit \nu}}2{{\mathit \chi}}$ decay of ${}^{116}\mathrm {Cd}$. Supersedes DANEVICH 2000 .
21  BERNABEI 2002D obtain limit for 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission of ${}^{136}\mathrm {Xe}$ using liquid Xe scintillation detector. They derive $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <2.0 - 3.0 \times 10^{-5}$ with several nuclear matrix elements.
22  Replaces TANAKA 1993 . FUSHIMI 2002 derive half-life limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ $~$decay by means of tracking calorimeter ELEGANT$~$V. Considering various matrix element calculations, a range of limits for the Majoron-neutrino coupling is given: $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <(6.3 - 360){\times }10^{-5}$.
23  ASHITKOV 2001 result for 0 ${{\mathit \nu}}{{\mathit \chi}}$ of ${}^{100}\mathrm {Mo}$ is less stringent than ARNOLD 2000 .
24  DANEVICH 2001 obtain limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission of ${}^{160}\mathrm {Gd}$ using Gd$_{2}$SiO$_{5}$:Ce crystal scintillators.
25  DANEVICH 2001 obtain limit for the 0 ${{\mathit \nu}}$2 ${{\mathit \chi}}$ decay with 2 Majoron emission of ${}^{160}\mathrm {Gd}$.
26  ARNOLD 2000 reports limit for the 0 ${{\mathit \nu}}{{\mathit \chi}}$ decay with Majoron emission derived from tracking calorimeter NEMO$~$2. Using ${}^{82}\mathrm {Se}$ source: $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <1.6 \times 10^{-4}$. Matrix element from GUENTHER 1996 .
27  Using ${}^{96}\mathrm {Zr}$ source: $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle <2.6 \times 10^{-4}$. Matrix element from ARNOLD 1999 .
28  ARNOLD 2000 reports limit for the 0 ${{\mathit \nu}}$2 ${{\mathit \chi}}$ decay with two Majoron emission derived from tracking calorimeter NEMO$~$2.
29  ARNOLD 1998 determine the limit for 0${{\mathit \nu}_{{\chi}}}$ decay with Majoron emission of ${}^{82}\mathrm {Se}$ using the NEMO-2 tracking detector. They derive $\langle \mathit g_{{{\mathit \nu}_{{\chi}}}}\rangle $ $<2.3 - 4.3 \times 10^{-4}$ with several nuclear matrix elements.
30  LUESCHER 1998 report a limit for the 0${{\mathit \nu}}$ decay with Majoron emission of ${}^{136}\mathrm {Xe}$ using ${}^{}\mathrm {Xe}$ TPC. This result is more stringent than BARABASH 1989 . Using the matrix elements of ENGEL 1988 , they obtain a limit on $\langle \mathit g_{ {{\mathit \nu}} {{\mathit \chi}} }\rangle $ of $2.0 \times 10^{-4}$.
31  See Table$~$1 in GUENTHER 1996 for limits on the Majoron coupling in different models.
References:
AGOSTINI 2022
JCAP 2212 012 Search for exotic physics in double-? decays with GERDA Phase II
AL-KHARUSI 2021
PR D104 112002 Search for Majoron-emitting modes of $^{136}$Xe double beta decay with the complete EXO-200 dataset
ARNOLD 2019
EPJ C79 440 Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3
ARNOLD 2018
EPJ C78 821 Final results on ${}^\mathbf 82 \hbox {Se}$ double beta decay to the ground state of ${}^\mathbf 82 \hbox {Kr}$ from the NEMO-3 experiment
AGOSTINI 2015A
EPJ C75 416 Results on ${{\mathit \beta}}{{\mathit \beta}}$ Decay with Emission of Two Neutrinos or Majorons in ${}^{76}\mathrm {Ge}$ from GERDA Phase I
ARNOLD 2015
PR D92 072011 Results of the Search for Neutrinoless Double-${{\mathit \beta}}$ Decay in ${}^{100}\mathrm {Mo}$ with the NEMO-3 Experiment
ALBERT 2014A
PR D90 092004 Search for Majoron-Emitting Modes of Double-Beta Decay of ${}^{136}\mathrm {Xe}$ with EXO-200
GANDO 2012
PR C86 021601 Limits on Majoron-Emitting Double-${{\mathit \beta}}$ Decays of ${}^{136}\mathrm {Xe}$ in the KamLAND-Zen Experiment
ARNOLD 2011
PRL 107 062504 Measurement of the ${{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life of ${}^{130}\mathrm {Te}$ with the NEMO-3 Detector
ARGYRIADES 2010
NP A847 168 Measurement of the Two Neutrino Double $\beta $ Decay Half-Life of ${}^{96}\mathrm {Zr}$ with the NEMO-3 Detector
ARGYRIADES 2009
PR C80 032501 Measurement of the Double-${{\mathit \beta}}$ Decay Half-Life of ${}^{150}\mathrm {Nd}$ and Search for Neutrinoless Decay Modes with the NEMO-3 Detector
ARNOLD 2006
NP A765 483 Limits on Different Majoron Decay Modes of ${}^{100}\mathrm {Mo}$ and ${}^{82}\mathrm {Se}$ for Neutrinoless Double Beta Decays in the NEMO-3 Experiment
ARNOLD 2004
JETPL 80 377 Study of 2${{\mathit \beta}}$ Decay of ${}^{100}\mathrm {Mo}$ and ${}^{82}\mathrm {Se}$ using the NEMO3 Detector
ARNABOLDI 2003
PL B557 167 A Calorimetric Search on Double beta Decay of ${}^{130}\mathrm {Te}$
DANEVICH 2003
PR C68 035501 Search for 2$\beta $ Decay of Cadmium and Tungsten Isotopes: Final Results of the Solotvina Experiment
BERNABEI 2002D
PL B546 23 Investigation of $\beta \beta $ Decay Modes in ${}^{134}\mathrm {Xe}$ and ${}^{135}\mathrm {Xe}$
FUSHIMI 2002
PL B531 190 Limits on Majoron Emitting Neutrinoless Double-beta Decay of ${}^{100}\mathrm {Mo}$
ASHITKOV 2001
JETPL 74 529 Double beta Decay in ${}^{100}\mathrm {Mo}$
DANEVICH 2001
NP A694 375 Quest for Double $\beta $ Decay of ${}^{160}\mathrm {Gd}$ and ${}^{}\mathrm {Ce}$ Isotopes
ARNOLD 2000
NP A678 341 Limits on Different Majoron Decay Modes of ${}^{100}\mathrm {Mo}$, ${}^{116}\mathrm {Cd}$, ${}^{82}\mathrm {Se}$ and ${}^{96}\mathrm {Zr}$ for Neutrinoless Double $\beta $ Decay in the NEMO-2 Experiment
ARNOLD 1998
NP A636 209 Double beta Decay of ${}^{82}\mathrm {Se}$
LUESCHER 1998
PL B434 407 Search for $\beta $ $\beta $ Decay in ${}^{136}\mathrm {Xe}$: New Results from the Gotthard Experiment
GUENTHER 1996
PR D54 3641 Bounds on New Majoron Models from the Heidelberg-Moscow Experiment
BECK 1993
PRL 70 2853 Investigation of the Majoron Accompanied Double $\beta $ Decay Mode of ${}^{76}\mathrm {Ge}$
BERNATOWICZ 1992
PRL 69 2341 Neutrino Mass Limits from a Precise Determination of $\beta $ $\beta $ Decay Rates of ${}^{128}\mathrm {Te}$ and ${}^{130}\mathrm {Te}$