Half-life Measurements and Limits for Double-$\beta $ Decay

INSPIRE   PDGID:
S076HDB
In most cases the transitions (Z,A)$~\rightarrow~$(Z+2,A) $+~2{{\mathit e}^{-}}$ $+$ (0$~$or$~$2) ${{\overline{\mathit \nu}}_{{e}}}$ to the 0${}^{+}$ ground state of the final nucleus are listed. However, we also list transitions that increase the nuclear charge (2${{\mathit e}^{+}}$, ${{\mathit e}^{+}}$/EC and ECEC) and transitions to excited states of the final nuclei (0${}^{+}_{i}$, 2${}^{+}$, and 2${}^{+}_{i}$). In the following Listings, only best or comparable limits or lifetimes for each isotope are reported and only those with T$_{1/2}>10^{20}$ years that are relevant for particle physics. For 2${{\mathit \nu}}$ decay, which is well established, only measured half-lives with the smallest (or comparable) error for each nucleus are reported.

${\mathrm {\mathit t_{1/2}}}$ ($ 10^{21} $ yr) CL$\%$ ISOTOPE  TRANSITION   METHOD CL% DOCUMENT ID
• • We do not use the following data for averages, fits, limits, etc. • •
$ \text{> 19000} $ $90$ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}$ MAJORANA 1
AALSETH
2018
$ \text{> 80000} $ $90$ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}$ GERDA 2
AGOSTINI
2018
$ >1.8 \times 10^{4} $ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ 90 3
ALBERT
2018
$ >1.5 \times 10^{4} $ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ 90 4
ALDUINO
2018
$ \text{> 53000} $ $90$ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}$ $g.s. \rightarrow g.s.$ GERDA 5
AGOSTINI
2017
$ \text{> 110} $ $90$ ${}^{134}\mathrm {Xe}$ 0${{\mathit \nu}}$ EXO-200 6
ALBERT
2017C
$ 0.82 \pm0.02 \pm0.06 $ ${}^{130}\mathrm {Te}$ 2${{\mathit \nu}}$ CUORE-0 7
ALDUINO
2017
$ (6.9 \pm0.15 \pm0.37)E-3 $ ${}^{100}\mathrm {Mo}$ 2${{\mathit \nu}}$ CUPID 8
ARMENGAUD
2017
$ \text{> 100} $ $90$ ${}^{116}\mathrm {Cd}$ 0${{\mathit \nu}}$ NEMO-3 9
ARNOLD
2017
$ \text{> 3.6} $ $90$ ${}^{36}\mathrm {Ar}$ 0${{\mathit \nu}}$ ECEC GERDA 10
AGOSTINI
2016
$ \text{> 4000} $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}$ $g.s. \rightarrow g.s.$ CUORE(CINO) 11
ALDUINO
2016
$ \text{> 14} $ $90$ ${}^{40}\mathrm {Ca}$ 0${{\mathit \nu}}$ ECEC, g.s. CRESST-II 12
ANGLOHER
2016B
$ (6.4 {}^{+0.7}_{-0.6}{}^{+1.2}_{-0.9})E-2 $ ${}^{48}\mathrm {Ca}$ 2${{\mathit \nu}}$ NEMO-3 13
ARNOLD
2016
$ (9.34 \pm0.22 {}^{+0.62}_{-0.60})E-3 $ ${}^{150}\mathrm {Nd}$ 2${{\mathit \nu}}$ NEMO-3 14
ARNOLD
2016A
$ \text{> 20.0} $ $90$ ${}^{150}\mathrm {Nd}$ 0${{\mathit \nu}}$ NEMO-3 14
ARNOLD
2016A
$ \text{> 26000} $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}$ $g.s. \rightarrow 2{}^{+}_{1}$ KamLAND-Zen 15
ASAKURA
2016
$ \text{> 26000} $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}$ $g.s. \rightarrow 2{}^{+}_{2}$ KamLAND-Zen 16
ASAKURA
2016
$ \text{> 24000} $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}$ $g.s. \rightarrow 0{}^{+}_{1}$ KamLAND-Zen 17
ASAKURA
2016
$ \text{> 1.1} $ $90$ ${}^{106}\mathrm {Cd}$ 0${{\mathit \nu}}$ ECEC ${}^{106}\mathrm {CdWO}_{4}$ 18, 19
BELLI
2016
$ \text{> 0.85} $ $90$ ${}^{106}\mathrm {Cd}$ 0${{\mathit \nu}}$ ECEC, 4${}^{+}$ ${}^{106}\mathrm {CdWO}_{4}$ 18, 20
BELLI
2016
$ \text{> 1.4} $ $90$ ${}^{106}\mathrm {Cd}$ 0${{\mathit \nu}}$ ECEC, 2,3${}^{-}$ ${}^{106}\mathrm {CdWO}_{4}$ 18, 21
BELLI
2016
$ \text{> 1.6} $ $90$ ${}^{114}\mathrm {Cd}$ 0${{\mathit \nu}}$ COBRA 22
EBERT
2016
$ \text{> 107000} $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}$ $g.s. \rightarrow g.s.$ KamLAND-Zen 23
GANDO
2016
$ 1.926 \pm0.094 $ ${}^{76}\mathrm {Ge}$ 2${{\mathit \nu}}$ $g.s. \rightarrow g.s.$ GERDA 24
AGOSTINI
2015A
$ (6.93 \pm0.04) \times 10^{-3} $ ${}^{100}\mathrm {Mo}$ 2${{\mathit \nu}}$ NEMO-3 25
ARNOLD
2015
$ >1100 $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}$ NEMO-3 26
ARNOLD
2015
$ 2.165 \pm0.016 \pm0.059 $ ${}^{136}\mathrm {Xe}$ 2${{\mathit \nu}}$ $g.s. \rightarrow g.s.$ EXO-200 27
ALBERT
2014
$ \text{> 11000} $ $90$ ${}^{136}\mathrm {Xe}$ 0${{\mathit \nu}}$ $g.s. \rightarrow g.s.$ EXO-200 28
ALBERT
2014B
$ \text{> 1100} $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}$ $\langle $m$\rangle $-driven NEMO-3 29
ARNOLD
2014
$ \text{> 600} $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}$ $\langle {{\mathit \lambda}}\rangle $-driven NEMO-3 30
ARNOLD
2014
$ \text{> 1000} $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}$ $\langle {{\mathit \eta}}\rangle $-driven NEMO-3 31
ARNOLD
2014
$ 0.107 {}^{+0.046}_{-0.026} $ ${}^{150}\mathrm {Nd}$ 0${{\mathit \nu}}+2{{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ ${{\mathit \gamma}}$ in ${}^{}\mathrm {Ge}$ det. 32
KIDD
2014
$ \text{> 0.13} $ $90$ ${}^{96}\mathrm {Ru}$ 0${{\mathit \nu}}+2{{\mathit \nu}}$ 2${{\mathit \beta}^{+}}$, g.s ${}^{}\mathrm {Ge}$ counting 33
BELLI
2013A
$ 9.2 {}^{+5.5}_{-2.6} \pm1.3 $ ${}^{78}\mathrm {Kr}$ 2${{\mathit \nu}}$2K $g.s. \rightarrow g.s.$ BAKSAN 34
GAVRILYAK
2013
$ \text{> 5.4} $ $90$ ${}^{78}\mathrm {Kr}$ 0${{\mathit \nu}}$2K $g.s. \rightarrow 2{}^{+}$ BAKSAN 35
GAVRILYAK
2013
$ \text{> 940} $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ CUORICINO 36
ANDREOTTI
2012
$ \text{> 1.0} $ $90$ ${}^{106}\mathrm {Cd}$ 0${{\mathit \nu}}$ ECEC, g.s. ${}^{106}\mathrm {CdWO}_{4}$ scint. 37
BELLI
2012A
$ \text{> 2.2} $ $90$ ${}^{106}\mathrm {Cd}$ 0${{\mathit \nu}}$ ${{\mathit \beta}^{+}}$EC, g.s. ${}^{106}\mathrm {CdWO}_{4}$ scint. 38
BELLI
2012A
$ \text{> 1.2} $ $90$ ${}^{106}\mathrm {Cd}$ 0${{\mathit \nu}}$ 2${{\mathit \beta}^{+}}$, g.s. ${}^{106}\mathrm {CdWO}_{4}$ scint. 39
BELLI
2012A
$ 2.38 \pm0.02 \pm0.14 $ ${}^{136}\mathrm {Xe}$ 2${{\mathit \nu}}$ $g.s. \rightarrow g.s.$ KamLAND-Zen 40
GANDO
2012A
$ 0.7 \pm0.09 \pm0.11 $ ${}^{130}\mathrm {Te}$ 2${{\mathit \nu}}$ NEMO-3 41
ARNOLD
2011
$ \text{> 130} $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}$ NEMO-3 42
ARNOLD
2011
$ \text{> 1.3} $ $90$ ${}^{112}\mathrm {Sn}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{3}$ ${{\mathit \gamma}}{}^{}\mathrm {Ge}$ det. 43
BARABASH
2011
$ \text{> 0.69} $ $90$ ${}^{112}\mathrm {Sn}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{2}$ ${{\mathit \gamma}}{}^{}\mathrm {Ge}$ det. 44
BARABASH
2011
$ \text{> 1.3} $ $90$ ${}^{112}\mathrm {Sn}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ ${{\mathit \gamma}}{}^{}\mathrm {Ge}$ det. 45
BARABASH
2011
$ \text{> 1.06} $ $90$ ${}^{112}\mathrm {Sn}$ 0${{\mathit \nu}}$ ${{\mathit \gamma}}{}^{}\mathrm {Ge}$ det. 46
BARABASH
2011
$ (69 \pm9 \pm10)E-2 $ ${}^{130}\mathrm {Te}$ 2${{\mathit \nu}}$ NEMO-3 47, 48
BARABASH
2011A
$ \text{> 360} $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}$ NEMO-3 49, 48
BARABASH
2011A
$ \text{> 100} $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}$ NEMO-3 50, 48
BARABASH
2011A
$ \text{> 0.32} $ $90$ ${}^{64}\mathrm {Zn}$ 0${{\mathit \nu}}$ ECEC, g.s. ZnWO$_{4}$ scint. 51
BELLI
2011D
$ \text{> 0.85} $ $90$ ${}^{64}\mathrm {Zn}$ 0${{\mathit \nu}}$ ${{\mathit \beta}^{+}}$EC, g.s. ZnWO$_{4}$ scint. 51
BELLI
2011D
$ \text{> 0.11} $ $90$ ${}^{106}\mathrm {Cd}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 4{}^{+}$ TGV2 det. 52
RUKHADZE
2011
$ (2.35 \pm0.14 \pm0.16)E-2 $ ${}^{96}\mathrm {Zr}$ 2${{\mathit \nu}}$ NEMO-3 53
ARGYRIADES
2010
$ \text{> 9.2} $ $90$ ${}^{96}\mathrm {Zr}$ 0${{\mathit \nu}}$ NEMO-3 54
ARGYRIADES
2010
$ \text{> 0.22} $ $90$ ${}^{96}\mathrm {Zr}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ NEMO-3 55
ARGYRIADES
2010
$ 0.69 {}^{+0.10}_{-0.08} \pm0.07 $ ${}^{100}\mathrm {Mo}$ 2${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ ${}^{}\mathrm {Ge}$ coinc. 56
BELLI
2010
$ \text{> 0.43} $ $90$ ${}^{64}\mathrm {Zn}$ 0${{\mathit \nu}}$ ${{\mathit \beta}^{+}}$EC ZnW0$_{4}$ scint. 57
BELLI
2009A
$ \text{> 0.11} $ $90$ ${}^{64}\mathrm {Zn}$ 0${{\mathit \nu}}$ ECEC ZnW0$_{4}$ scint. 58
BELLI
2009A
$ 0.55 {}^{+0.12}_{-0.09} $ ${}^{100}\mathrm {Mo}$ 2${{\mathit \nu}}+0{{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ Ge coincidence 59
KIDD
2009
$ \text{> 0.22} $ $90$ ${}^{64}\mathrm {Zn}$ 0${{\mathit \nu}}$ ZnWO$_{4}$ scint. 60
BELLI
2008
$ \text{> 1.1} $ $90$ ${}^{114}\mathrm {Cd}$ 0${{\mathit \nu}}$ 2$\beta $ CdWO$_{4}$ scint. 61
BELLI
2008B
$ \text{> 58} $ $90$ ${}^{48}\mathrm {Ca}$ 0${{\mathit \nu}}$ CaF$_{2}$ scint. 62
UMEHARA
2008
$ 0.57 {}^{+0.13}_{-0.09} \pm0.08 $ ${}^{100}\mathrm {Mo}$ 2${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ NEMO-3 63
ARNOLD
2007
$ \text{> 89} $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ NEMO-3 64
ARNOLD
2007
$ \text{> 160} $ $90$ ${}^{100}\mathrm {Mo}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 2{}^{+}$ NEMO-3 65
ARNOLD
2007
$ 22300 {}^{+4400}_{-3100} $ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}$ Enriched ${}^{}\mathrm {HPGe}$ 66
KLAPDOR-KLEIN..
2006A
$ >1800 $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}$ Cryog. det. 67
ARNABOLDI
2005
$ >100 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}$ NEMO-3 68
ARNOLD
2005A
$ (9.6 \pm0.3 \pm1.0)E-2 $ ${}^{82}\mathrm {Se}$ 2${{\mathit \nu}}$ NEMO-3 69
ARNOLD
2005A
$ >140 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}$ NEMO-3 70
ARNOLD
2004
$ 0.14 {}^{+0.04}_{-0.02} \pm0.03 $ ${}^{150}\mathrm {Nd}$ 0${{\mathit \nu}}+2{{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ ${{\mathit \gamma}}$ in Ge det. 71
BARABASH
2004
$ >31 $ $90$ ${}^{130}\mathrm {Te}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 2{}^{+}$ Cryog. det. 72
ARNABOLDI
2003
$ >110 $ $90$ ${}^{128}\mathrm {Te}$ 0${{\mathit \nu}}$ Cryog. det. 73
ARNABOLDI
2003
$ (0.029 {}^{+0.004}_{-0.003}) $ ${}^{116}\mathrm {Cd}$ 2${{\mathit \nu}}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 74
DANEVICH
2003
$ >170 $ $90$ ${}^{116}\mathrm {Cd}$ 0${{\mathit \nu}}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 75
DANEVICH
2003
$ >29 $ $90$ ${}^{116}\mathrm {Cd}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 2{}^{+}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 76
DANEVICH
2003
$ >14 $ $90$ ${}^{116}\mathrm {Cd}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{1}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 77
DANEVICH
2003
$ >6 $ $90$ ${}^{116}\mathrm {Cd}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 0{}^{+}_{2}$ ${}^{116}\mathrm {Cd}WO_{4}$ scint. 78
DANEVICH
2003
$ >1.1 $ $90$ ${}^{186}\mathrm {W}$ 0${{\mathit \nu}}$ CdWO$_{4}$ scint. 79
DANEVICH
2003
$ >1.1 $ $90$ ${}^{186}\mathrm {W}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 2{}^{+}$ CdWO$_{4}$ scint. 80
DANEVICH
2003
$ >15700 $ $90$ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}$ Enriched HPGe 81
AALSETH
2002B
$ >58 $ $90$ ${}^{134}\mathrm {Xe}$ 0${{\mathit \nu}}$ Liquid Xe Scint. 82
BERNABEI
2002D
$ >1.3 $ $90$ ${}^{160}\mathrm {Gd}$ 0${{\mathit \nu}}$ ${}^{}\mathrm {Gd}_{2}$SiO$_{5}$:Ce 83
DANEVICH
2001
$ >1.3 $ $90$ ${}^{160}\mathrm {Gd}$ 0${{\mathit \nu}}$ $0{}^{+} \rightarrow 2{}^{+}$ ${}^{}\mathrm {Gd}_{2}$SiO$_{5}$:Ce 84
DANEVICH
2001
$ \text{> 19000} $ $90$ ${}^{76}\mathrm {Ge}$ 0${{\mathit \nu}}$ Enriched HPGe 85
KLAPDOR-KLEIN..
2001
$ (9.4 \pm3.2)E-3 $ ${}^{96}\mathrm {Zr}$ 0${{\mathit \nu}}+2{{\mathit \nu}}$ Geochem 86
WIESER
2001
$ 0.042 {}^{+0.033}_{-0.013} $ ${}^{48}\mathrm {Ca}$ 2${{\mathit \nu}}$ Ge spectrometer 87
BRUDANIN
2000
$ 0.021 {}^{+0.008}_{-0.004} \pm0.002 $ ${}^{96}\mathrm {Zr}$ 2${{\mathit \nu}}$ NEMO-2 88
ARNOLD
1999
$ >2.8 $ $90$ ${}^{82}\mathrm {Se}$ 0${{\mathit \nu}}$ $0{}^{+}\rightarrow2{}^{+}$ NEMO-2 89
ARNOLD
1998
$ (6.75 {}^{+0.37}_{-0.42} \pm0.68)E-3 $ ${}^{150}\mathrm {Nd}$ 2${{\mathit \nu}}$ TPC 90
DESILVA
1997
$ 0.043 {}^{+0.024}_{-0.011} \pm0.014 $ ${}^{48}\mathrm {Ca}$ 2${{\mathit \nu}}$ TPC 91
BALYSH
1996
$ 0.026 {}^{+0.009}_{-0.005} $ ${}^{116}\mathrm {Cd}$ 2${{\mathit \nu}}$ $0{}^{+}\rightarrow0{}^{+}$ ELEGANT IV
EJIRI
1995
$ 7200 \pm400 $ ${}^{128}\mathrm {Te}$ 0${{\mathit \nu}}+2{{\mathit \nu}}$ Geochem 92
BERNATOWICZ
1992
$ 2.0 \pm0.6 $ ${}^{238}\mathrm {U}$ 0${{\mathit \nu}}+2{{\mathit \nu}}$ Radiochem 93
TURKEVICH
1991
$ 1800 \pm700 $ ${}^{128}\mathrm {Te}$ 0${{\mathit \nu}}+2{{\mathit \nu}}$ Geochem. 94
LIN
1988B
1  AALSETH 2018 uses the MAJORANA Demonstrator to search for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay mode. The exposure is 9.95 kg$\cdot{}$year.
2  AGOSTINI 2018 uses the GERDA detector to search for the 0${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay modes. The exposure is 46.7 kg$\cdot{}$year. Supersede AGOSTINI 2017
3  Albert 2018 use the ungraded EXO-200 detector with improved energy resolution of $\sigma/E$ =1.23%. The half-life sensitivity is $3.7 \times 10^{25}$ yr. The exposure was 177 kg$\cdot$yr.
4  Alduino 2018 use the CUORE bolometer array with the energy resolution $(7.7 \pm 0.5)$ keV, exposure of 86.3 kg$\cdot$yr, and background $(0.014 \pm 0.002)$/keV$\cdot$kg$\cdot$yr. The $0\nu\beta\beta$ decay half-life limit of this run is 1.3$\times$10$^{25}$ yr; the shown limit is obtained by combining this run with previous experiments.
5  AGOSTINI 2017 result corresponds to data collected with GERDA phase 1 and first release of phase 2 for a total of 343 mol-yr exposure. Supersedes AGOSTINI 2013A.
6  ALBERT 2017C uses the EXO-200 detector that contains $19.098$ $\pm0.014\%$ admixture of ${}^{134}\mathrm {Xe}$ to search for the 0${{\mathit \nu}}$ and 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ decay modes. The exposure is 29.6 kg$\cdot{}$year.
7  ALDUINO 2017 use the CUORE-0 detector containing 10.8 kg of ${}^{130}\mathrm {Te}$ in 52 crystals of TeO$_{2}$. The exposure was 9.3 kg yr of ${}^{130}\mathrm {Te}$. This is a more accurate rate determination than in ARNOLD 2011 and BARABASH 2011A.
8  ARMENGAUD 2017 use $185$ $\pm0.1$ g crystal of Li$_{2}{}^{100}\mathrm {Mo}O_{4}$ to determine the ${}^{100}\mathrm {Mo}$ 2${{\mathit \nu}}$ ${{\mathit \beta}}{{\mathit \beta}}$ half-life. The exposure was of $1303$ $\pm20$ hours only, using novel technique.
9  ARNOLD 2017 use the NEMO-3 tracking calorimeter, containing 410 g of enriched ${}^{116}\mathrm {Cd}$ exposed for 5.26 yr, to determine the half-life value and limit. Supersedes BARABASH 2011A.
10  AGOSTINI 2016 search for a sharp energy photon of $429.88$ $\pm0.19$ keV providing the signature of the radiative 0${{\mathit \nu}}$ECEC decay of ${}^{36}\mathrm {Ar}$. The bare ${}^{}\mathrm {Ge}$ detectors are immersed in 89.2t of LAr, corresponding to 298 kg of ${}^{36}\mathrm {Ar}$. The GERDA phase I ran from 11/2011 to 5/2013. The obtained limit is still many orders of magnitude from the theoretical predication.
11  ALDUINO 2016 report result obtained with 9.8 kg y of data collected with the CUORE-0 bolometer, combined with data from the CUORICINO. Supersedes ALFONSO 2015 .
12  ANGLOHER 2016B use the CRESST-II detector and ${}^{}\mathrm {CaWO}_{4}$ crystals to search for the 0${{\mathit \nu}}~$2EC decay of ${}^{40}\mathrm {Ca}$. Limits for ${}^{180}\mathrm {W}$, which is one of the best candidates to observe resonant transition enhancement, are also reported.
13  ARNOLD 2016 use the NEMO-3 detector and a source of 6.99 g of ${}^{48}\mathrm {Ca}$. The half-life is based on 36.7 g year exposure. It is consistent, although somewhat longer, than the previous determinations of the half-life. Supersedes BARABASH 2011A.
14  ARNOLD 2016A use the NEMO-3 tracking calorimeter, containing 36.6 g of ${}^{150}\mathrm {Nd}$ exposed for 1918.5 days, to determine the half-life. Supersedes ARGYRIADES 2009 .
15  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the first excited state of the daughter nuclide.
16  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the second excited state of the daughter nuclide.
17  ASAKURA 2016 use the KamLAND-Zen liquid scintillator calorimeter (${}^{136}\mathrm {Xe}$ 89.5 kg yr) to place a limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-decay into the third excited state of the daughter nuclide.
18  BELLI 2016 report on searches for various ${{\mathit \beta}}{{\mathit \beta}}$ decay modes in ${}^{106}\mathrm {Cd}$ isotope into ground state and into excited levels of the daughter nucleus. In particular, a search for the resonant 0${{\mathit \nu}}$2EC decay into excited states is considered. They use 545.2 days of data from an isotopically enriched ${}^{106}\mathrm {CdWO}_{4}$ (216 g) scintillator, in coincidence with 4 ${}^{}\mathrm {Ge}$ detectors.
19  Assume resonant 0${{\mathit \nu}}$2EC (2K) decay into the E${}^{*}$ = 2718 keV excited state.
20  Assume resonant 0${{\mathit \nu}}$2EC (KL$_{1}$) decay into the E${}^{*}$ = 2741 keV excited state.
21  Assume resonant 0${{\mathit \nu}}$2EC (KL$_{3}$) decay into the E${}^{*}$ = 2748 keV excited state.
22  EBERT 2016 use the COBRA demonstrator with ${}^{}\mathrm {CdZnTe}$ semiconductor detectors to obtain 0${{\mathit \nu}}$ half-life limits for a number of isotopes. The limit for ${}^{114}\mathrm {Cd}$ fulfills the listing criteria; it is based on a total detector mass exposure of 212.8 kg day.
23  GANDO 2016 use the the KamLAND detector to search for the 0${{\mathit \nu}}$ decay of ${}^{136}\mathrm {Xe}$. With a significant background reduction, the combination of results of the first (270.7 days) and the second phase (263.8 days) of the experiment leads to about six fold improvement over the previous limit. Supersedes GANDO 2013A.
24  AGOSTINI 2015A use 17.9 kg yr exposure of the GERDA calorimeter to derive an improved measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay half life of ${}^{76}\mathrm {Ge}$.
25  ARNOLD 2015 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. Supersedes ARNOLD 2005A and ARNOLD 2004 .
26  ARNOLD 2015 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the limit of 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. Supersedes {ARNOLD 2005A} and BARABASH 2011A.
27  ALBERT 2014 use the EXO-200 tracking detector for a re-measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{136}\mathrm {Xe}$. A nuclear matrix element of $0.0218$ $\pm0.0003$ MeV${}^{-1}$ is derived from this data. Supersedes ACKERMAN 2011 .
28  ALBERT 2014B use 100 kg yr of exposure of the EXO-200 tracking calorimeter to place a lower limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{136}\mathrm {Xe}$. Supersedes AUGER 2012 .
29  ARNOLD 2014 use 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter to derive a limit on the $\langle $m$\rangle $-driven (light neutrino mass) 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$. Supersedes BARABASH 2011A.
30  ARNOLD 2014 use 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter to derive a limit on the $\langle {{\mathit \lambda}}\rangle $-driven (right handed quark and lepton currents) 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$.
31  ARNOLD 2014 use 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter to derive a limit on the $\langle {{\mathit \eta}}\rangle $-driven (right handed quark current) 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$-half life of ${}^{100}\mathrm {Mo}$.
32  KIDD 2014 utilize two undergraound ${}^{}\mathrm {Ge}$ detectors to determine the inclusive double beta decay rate to the first excited 0${}^{+}_{1}$ state using ${{\mathit \gamma}}-{{\mathit \gamma}}$ coincidences.
33  BELLI 2013A use an underground ${}^{}\mathrm {Ge}$ detector to search for the 2${{\mathit \beta}^{+}}$-decay of ${}^{96}\mathrm {Ru}$ via the intensity of the annihilation peak. This method cannot distinguish two from zero neutrino decay.
34  GAVRILYAK 2013 use a proportional counter filled with ${}^{}\mathrm {Kr}$ gas to search for the 2${{\mathit \nu}}$2K decay of ${}^{78}\mathrm {Kr}$. Data with the enriched and depleted ${}^{}\mathrm {Kr}$ were used to determine signal and background. A 2.5${{\mathit \sigma}}$ excess of events obtained with the enriched sample is interpreted as an indication for the presence of this decay.
35  GAVRILYAK 2013 use a proportional counter filled with ${}^{}\mathrm {Kr}$ gas to search for the 0${{\mathit \nu}}$2K decay of ${}^{78}\mathrm {Kr}$ into 2828 keV excited state of ${}^{78}\mathrm {Se}$. This transition could be subject to resonant rate enhancement. Data obtained with the enriched and depleted ${}^{}\mathrm {Kr}$ were used to determine signal and background.
36  ANDREOTTI 2012 use high resolution TeO$_{2}$ bolometric calorimeter to search for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{130}\mathrm {Te}$ leading to the excited 0${}^{1}_{+}$ state at 1793.5 keV.
37  BELLI 2012A use ${}^{106}\mathrm {CdWO}_{4}$ 215 g crystal scintillator to search for various ${{\mathit \beta}}{{\mathit \beta}}$ decay modes. The limit for the ECEC mode is derived from the fit to the background spectrum in the $1.8 - 3.2$ MeV energy interval in the run of 6590 hours. The same analysis provides several limits ($\sim{}$ $2 - 5 \times 10^{20}$ years) for the ECEC mode leading to the excited 0${}^{+}$ and 2${}^{+}$ states. Also a similar size limits for the possible resonance process populating states at 2718 keV, 2741 keV, and 2748 keV were obtained.
38  BELLI 2012A use ${}^{106}\mathrm {CdWO}_{4}$ 215 g crystal scintillator to search for various ${{\mathit \beta}}{{\mathit \beta}}$ decay modes. The limit for the EC${{\mathit \beta}^{+}}$ mode is derived from the fit to the background spectrum in the $2.0 - 3.0$ MeV energy interval in the run of 6590 hours. The same analysis provides several limits ($\sim{}0.5 - 1.3 \times 10^{21}$ years) for the EC${{\mathit \beta}^{+}}$ mode leading to the excited 0${}^{+}$ and 2${}^{+}$ states.
39  BELLI 2012A use ${}^{106}\mathrm {CdWO}_{4}$ 215 g crystal scintillator to search for various ${{\mathit \beta}}{{\mathit \beta}}$ decay modes. The limit for the ${{\mathit \beta}^{+}}{{\mathit \beta}^{+}}$ mode is derived from the fit to the background spectrum in the $0.76 - 2.8$ MeV energy interval in the run of 6590 hours. The same analysis provides the limit ($1.2 \times 10^{21}$ years) for the ${{\mathit \beta}^{+}}{{\mathit \beta}^{+}}$ mode leading to the first excited 2${}^{+}$ state.
40  GANDO 2012A use a modification of the existing KamLAND detector. The ${{\mathit \beta}}{{\mathit \beta}}$ decay source/detector is 13 tons of enriched ${}^{136}\mathrm {Xe}$-loaded scintillator contained in an inner balloon. The 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay rate is derived from the fit to the spectrum between 0.5 and 4.8 MeV. This result is in agreement with ACKERMAN 2011 .
41  ARNOLD 2011 use enriched ${}^{130}\mathrm {Te}$ in the NEMO-3 detector to measure the 2 ${{\mathit \nu}}$ ${{\mathit \beta}{\mathit \beta}}$ decay rate. This result is in agreement with, but more accurate than ARNABOLDI 2003 .
42  ARNOLD 2011 use the NEMO-3 detector to obtain a limit for the 0 ${{\mathit \nu}}$ ${{\mathit \beta}{\mathit \beta}}$ decay.This result is less significant than ARNABOLDI 2005 .
43  BARABASH 2011 use 100 g of enriched ${}^{112}\mathrm {Sn}$ to determine a limit for the ECEC 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the 0${}^{+}_{3}$ state of ${}^{112}\mathrm {Cd}$ by searching for the de-excitation ${{\mathit \gamma}}$ with a ${}^{}\mathrm {Ge}$ detector. This decay mode is a candidate for resonant rate enhancement.
44  BARABASH 2011 use 100 g of enriched ${}^{112}\mathrm {Sn}$ to determine a limit for the ECEC 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the 0${}^{+}_{2}$ state of ${}^{112}\mathrm {Cd}$ by searching for the de-excitation ${{\mathit \gamma}}$ with a ${}^{}\mathrm {Ge}$ detector.
45  BARABASH 2011 use 100 g of enriched ${}^{112}\mathrm {Sn}$ to determine a limit for the ECEC 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the 0${}^{+}_{1}$ state of ${}^{112}\mathrm {Cd}$ by searching for the de-excitation ${{\mathit \gamma}}$ with a ${}^{}\mathrm {Ge}$ detector.
46  BARABASH 2011 use 100 g of enriched ${}^{112}\mathrm {Sn}$ to determine a limit for the ECEC 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the ground state of ${}^{112}\mathrm {Cd}$ by searching for the de-excitation ${{\mathit \gamma}}$ with a ${}^{}\mathrm {Ge}$ detector.
47  Supersedes ARNABOLDI 2003 .
48  BARABASH 2011A use the NEMO-3 detector to measure 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ rates and place limits on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half lives for various nuclides.
49  Supersedes ARNOLD 2005A, ARNOLD 2004 , ARNOLD 1998 , and ELLIOTT 1992 .
50  Less restrictive than ARNABOLDI 2008 .
51  BELLI 2011D use ZnWO$_{4}$ scintillator calorimeters to search for various ${{\mathit \beta}}{{\mathit \beta}}$ decay modes of ${}^{64}\mathrm {Zn}$, ${}^{70}\mathrm {Zn}$, ${}^{180}\mathrm {W}$, and ${}^{186}\mathrm {W}$.
52  RUKHADZE 2011 uses 13.6 g of enriched ${}^{106}\mathrm {Cd}$ to search for the neutrinoless ECEC decay into an excited state of ${}^{106}\mathrm {Pd}$ and its characteristic ${{\mathit \gamma}}$-radiation using the TGV2 detector. This decay mode is a candidate for resonant rate enhancement, however, hindered by the large spin difference.
53  ARGYRIADES 2010 use $9.4$ $\pm0.2$ g of ${}^{96}\mathrm {Zr}$ in NEMO-3 detector and identify its 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay. The result is in agreement and supersedes ARNOLD 1999 .
54  ARGYRIADES 2010 use $9.4$ $\pm0.2$ g of ${}^{96}\mathrm {Zr}$ in NEMO-3 detector and obtain a limit of the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay. The result is in agreement and supersedes ARNOLD 1999 .
55  ARGYRIADES 2010 use $9.4$ $\pm0.2$ g of ${}^{96}\mathrm {Zr}$ in NEMO-3 detector and obtain a limit of the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay into the first excited 0${}^{+}_{1}$ state in ${}^{96}\mathrm {Mo}$.
56  BELLI 2010 use enriched ${}^{100}\mathrm {Mo}$ with 4 HP ${}^{}\mathrm {Ge}$ detectors to record the 590.8 and 539.5 keV ${{\mathit \gamma}}$ rays from the decay of the 0${}^{+}_{1}$ state in ${}^{100}\mathrm {Ru}$ both in singles and coincidences. This result confirms the measurement of KIDD 2009 and ARNOLD 2007 and supersedes them.
57  BELLI 2009A use ZnWO$_{4}$ scintillating crystals to search for various modes of ${{\mathit \beta}}{{\mathit \beta}}$ decay. This work improves the limits for different modes of ${}^{64}\mathrm {Zn}$ decay into the ground state of ${}^{64}\mathrm {Ni}$, in this case for the 0${{\mathit \nu}}{{\mathit \beta}^{+}}$EC mode. Supersedes BELLI 2008 .
58  BELLI 2009A use ZnWO$_{4}$ scintillating crystals to search for various modes of ${{\mathit \beta}}{{\mathit \beta}}$ decay. This work improves the limits for different modes of ${}^{64}\mathrm {Zn}$ decay into the ground state of ${}^{64}\mathrm {Ni}$, in this case for the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ ECEC mode. Supersedes BELLI 2008 .
59  KIDD 2009 combine past and new data with an improved coincidence detection efficiency determination. The result agrees with ARNOLD 1995 . Supersedes DEBRAECKELEER 2001 and BARABASH 1995 .
60  BELLI 2008 use ZnWO$_{4}$ scintillation calorimeter to search for neutrinoless ${{\mathit \beta}^{+}}$ plus electron capture decay of ${}^{64}\mathrm {Zn}$. The halflife limit for the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ mode is $2.1 \times 10^{20}$ years.
61  BELLI 2008B use CdWO$_{4}$ scintillation calorimeter to search for 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{114}\mathrm {Cd}$.
62  UMEHARA 2008 use CaF$_{2}$ scintillation calorimeter to search for double beta decay of ${}^{48}\mathrm {Ca}$. Limit is significantly more stringent than quoted sensitivity: $18 \times 10^{21}$ years.
63  First exclusive measurement of 2${{\mathit \nu}}$-decay to the first excited 0${}^{+}_{1}$-state of daughter nucleus. ARNOLD 2007 use the NEMO-3 tracking calorimeter to detect all particles emitted in decay. Result agrees with the inclusive ( 0 ${{\mathit \nu}}{+}$ 2 ${{\mathit \nu}}$ ) measurement of DEBRAECKELEER 2001 .
64  Limit on 0${{\mathit \nu}}$-decay to the first excited 0${}^{+}_{1}$-state of daughter nucleus using NEMO-3 tracking calorimeter. Supersedes DASSIE 1995 .
65  Limit on 0${{\mathit \nu}}$-decay to the first excited 2${}^{+}$-state of daughter nucleus using NEMO-3 tracking calorimeter.
66  KLAPDOR-KLEINGROTHAUS 2006A present re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 2004A. Modified pulse shape analysis leads the authors to claim improved 6$\sigma $ statistical evidence for observation of 0${{\mathit \nu}}$-decay, compared to 4.2$\sigma $ in KLAPDOR-KLEINGROTHAUS 2004A. Analysis of the systematic uncertainty is not presented. This re-analysis is disputed in AGOSTINI 2013A and SCHWINGENHEUER 2013 .
67  Supersedes ARNABOLDI 2004 . Bolometric TeO$_{2}$ detector array CUORICINO is used for high resolution search for 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay. The half-life limit is derived from 3.09 kg yr ${}^{130}\mathrm {Te}$ exposure.
68  NEMO-3 tracking calorimeter is used in ARNOLD 2005A to place limit on 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{82}\mathrm {Se}$. Detector contains 0.93 kg of enriched ${}^{82}\mathrm {Se}$. Supersedes ARNOLD 2004 .
69  ARNOLD 2005A use the NEMO-3 tracking detector to determine the 2 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ half-life of ${}^{82}\mathrm {Se}$ with high statistics and low background (389 days of data taking). Supersedes ARNOLD 2004 .
70  ARNOLD 2004 use the NEMO-3 tracking detector to determine the limit for 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ halflife of ${}^{82}\mathrm {Se}$. This represents an improvement, by a factor of $\sim{}$10, when compared with ELLIOTT 1992 . It supersedes the limit of ARNOLD 1998 for this decay using NEMO-2.
71  BARABASH 2004 perform an inclusive measurement of the ${{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{150}\mathrm {Nd}$ into the first excited (0${}^{+}_{1}$) state of ${}^{150}\mathrm {Sm}$. Gamma radiation emitted in decay of the excited state is detected.
72  Decay into first excited state of daughter nucleus.
73  Supersedes ALESSANDRELLO 2000 . Array of TeO$_{2}$ crystals in high resolution cryogenic calorimeter. Some enriched in ${}^{128}\mathrm {Te}$. Ground state to ground state decay.
74  Calorimetric measurement of 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ ground state decay of ${}^{116}\mathrm {Cd}$ using enriched CdWO$_{4}$ scintillators. Agrees with EJIRI 1995 and ARNOLD 1996 . Supersedes DANEVICH 2000 .
75  Limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{116}\mathrm {Cd}$ using enriched CdWO$_{4}$ scintillators. Supersedes DANEVICH 2000 .
76  Limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{116}\mathrm {Cd}$ into first excited 2${}^{+}$ state of daughter nucleus using enriched CdWO$_{4}$ scintillators. Supersedes DANEVICH 2000 .
77  Limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{116}\mathrm {Cd}$ into first excited 0${}^{+}$ state of daughter nucleus using enriched CdWO$_{4}$ scintillators. Supersedes DANEVICH 2000 .
78  Limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{116}\mathrm {Cd}$ into second excited 0${}^{+}$ state of daughter nucleus using enriched CdWO$_{4}$ scintillators. Supersedes DANEVICH 2000 .
79  Limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ ground state decay of ${}^{186}\mathrm {W}$ using enriched CdWO$_{4}$ scintillators.
80  Limit on the 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{186}\mathrm {W}$ to the first excited 2${}^{+}$ state of the daughter nucleus using enriched CdWO$_{4}$ scintillators.
81  AALSETH 2002B limit is based on 117 mol$\cdot{}$yr of data using enriched Ge detectors. Background reduction by means of pulse shape analysis is applied to part of the data set. Reported limit is slightly less restrictive than that in KLAPDOR-KLEINGROTHAUS 2001 However, it excludes part of the allowed half-life range reported in KLAPDOR-KLEINGROTHAUS 2001B for the same nuclide. The analysis has been criticized in KLAPDOR-KLEINGROTHAUS 2004B. The criticism was addressed and disputed in AALSETH 2004 .
82  BERNABEI 2002D report a limit for the 0${{\mathit \nu}}$, 0${}^{+}$ $\rightarrow$ 0${}^{+}$ decay of ${}^{134}\mathrm {Xe}$, present in the source at 17$\%$, by considering the maximum number of events for this mode compatible with the fitted smooth background.
83  DANEVICH 2001 place limit on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{160}\mathrm {Gd}$ using Gd$_{2}$SiO$_{5}$:Ce crystal scintillators. The limit is more stringent than KOBAYASHI 1995 .
84  DANEVICH 2001 place limits on 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{160}\mathrm {Gd}$ into excited 2${}^{+}$ state of daughter nucleus using Gd$_{2}$SiO$_{5}$:Ce crystal scintillators.
85  KLAPDOR-KLEINGROTHAUS 2001 is a continuation of the work published in BAUDIS 1999 . Isotopically enriched Ge detectors are used in calorimetric measurement. The most stringent bound is derived from the data set in which pulse-shape analysis has been used to reduce background. Exposure time is $35.5~$kg$~$y. Supersedes BAUDIS 1999 as most stringent result.
86  WIESER 2001 reports an inclusive geochemical measurement of ${}^{96}\mathrm {Zr}$ ${{\mathit \beta}}{{\mathit \beta}}$ half life. Their result agrees within 2$\sigma $ with ARNOLD 1999 but only marginally, within 3$\sigma $, with KAWASHIMA 1993 .
87  BRUDANIN 2000 determine the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ halflife of ${}^{48}\mathrm {Ca}$. Their value is less accurate than BALYSH 1996 .
88  ARNOLD 1999 measure directly the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{}\mathrm {Zr}$ for the first time, using the NEMO-2 tracking detector and an isotopically enriched source. The lifetime is more accurate than the geochemical result of KAWASHIMA 1993 .
89  ARNOLD 1998 determine the limit for 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay to the excited 2${}^{+}$ state of ${}^{82}\mathrm {Se}$ using the NEMO-2 tracking detector.
90  DESILVA 1997 result for 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{150}\mathrm {Nd}$ is in marginal agreement with ARTEMEV 1993 . It has smaller errors.
91  BALYSH 1996 measure the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay of ${}^{48}\mathrm {Ca}$, using a passive source of enriched ${}^{48}\mathrm {Ca}$ in a TPC.
92  BERNATOWICZ 1992 finds ${}^{128}\mathrm {Te}/{}^{130}\mathrm {Te}$ activity ratio from slope of ${}^{128}\mathrm {Xe}/{}^{132}\mathrm {Xe}$ vs ${}^{130}\mathrm {Xe}/{}^{132}\mathrm {Xe}$ ratios during extraction, and normalizes to lead-dated ages for the ${}^{130}\mathrm {Te}$ lifetime. The authors state that their results imply that ``(a)the double beta decay of ${}^{128}\mathrm {Te}$ has been firmly established and its half-life has been determined $\ldots$ without any ambiguity due to trapped Xe interferences$\ldots$ (b)Theoretical calculations $\ldots$ underestimate the [long half-lives of ${}^{128}\mathrm {Te}{}^{130}\mathrm {Te}$] by 1 or 2 orders of magnitude, pointing to a real suppression in the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay rate of these isotopes. (c)Despite [this], most $\beta \beta $-models predict a $\mathit ratio$ of 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ decay widths $\ldots$ in fair agreement with observation.'' Further details of the experiment are given in BERNATOWICZ 1993 . Our listed half-life has been revised downward from the published value by the authors, on the basis of reevaluated cosmic-ray ${}^{128}\mathrm {Xe}$ production corrections.
93  TURKEVICH 1991 observes activity in old ${}^{}\mathrm {U}$ sample. The authors compare their results with theoretical calculations. They state ``Using the phase-space factors of Boehm and Vogel (BOEHM 1987 ) leads to matrix element values for the ${}^{238}\mathrm {U}$ transition in the same range as deduced for ${}^{130}\mathrm {Te}$ and ${}^{76}\mathrm {Ge}$. On the other hand, the latest theoretical estimates (STAUDT 1990 ) give an upper limit that is 10 times lower. This large discrepancy implies either a defect in the calculations or the presence of a faster path than the standard two-neutrino mode in this case.'' See BOEHM 1987 and STAUDT 1990 .
94  Ratio of inclusive double beta half lives of ${}^{128}\mathrm {Te}$ and ${}^{130}\mathrm {Te}$ determined from minerals melonite (${}^{}\mathrm {NiTe}_{2}$) and altaite (${}^{}\mathrm {PbTe}$) by means of mass spectroscopic measurement of abundance of ${{\mathit \beta}}{{\mathit \beta}}$ -decay products. As gas-retention-age could not be determined the authors use half life of ${}^{130}\mathrm {Te}$ (LIN 1988 ) to infer the half life of ${}^{128}\mathrm {Te}$. No estimate of the systematic uncertainty of this method is given. The directly determined half life ratio agrees with BERNATOWICZ 1992 . However, the inferred ${}^{128}\mathrm {Te}$ half life disagrees with KIRSTEN 1983 and BERNATOWICZ 1992 .
References:
AALSETH 2018
PRL 120 132502 Search for Zero-Neutrino Double Beta Decay in $^{76}$Ge with the Majorana Demonstrator
AGOSTINI 2018
PRL 120 132503 Improved Limit on Neutrinoless Double- ? Decay of Ge76 from GERDA Phase II
ALBERT 2018
PRL 120 072701 Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector
ALDUINO 2018
PRL 120 132501 First Results from CUORE: A Search for Lepton Number Violation via $0\nu\beta\beta$ Decay of $^{130}$Te
AGOSTINI 2017
NAT 544 47 Background Free Search for Neutrinoless Double beta Decay with GERDA Phase II
ALBERT 2017C
PR D96 092001 Searches for Double Beta Decay of ${}^{134}\mathrm {Xe}$ with EXO-200
ALDUINO 2017
EPJ C77 13 Measurement of the Two-Neutrino Double-Beta Decay Half-Life of ${}^{130}\mathrm {Te}$ with the CUORE-0 Experiment
ARMENGAUD 2017
EPJ C77 785 Development of ${}^{100}\mathrm {Mo}$-containing Scintillating Bolometers for a High-sensitivity Neutrinoless Double-beta Decay Search
ARNOLD 2017
PR D95 012007 Measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life and Search for the 0${{\mathit \nu}}\beta \beta $ Decay of ${}^{116}\mathrm {Cd}$ with the NEMO-3 Detector
AGOSTINI 2016
EPJ C76 652 Limit on the Radiative Neutrinoless Double Electron Capture of ${}^{36}\mathrm {Ar}$ from GERDA Phase I
ALDUINO 2016
PR C93 045503 Analysis Techniques for the Evaluation of the Neutrinoless Double-${{\mathit \beta}}$ Decay Lifetime in ${}^{130}\mathrm {Te}$ with the CUORE-0 Detector
ANGLOHER 2016B
JP G43 095202 New Limits on Double Electron Capture of ${}^{40}\mathrm {Ca}$ and ${}^{180}\mathrm {W}$
ARNOLD 2016A
PR D94 072003 Measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life of ${}^{150}\mathrm {Nd}$ and a Search for 0${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay Processes with the Full Exposure from the NEMO-3 Detector
ARNOLD 2016
PR D93 112008 Measurement of the Double-Beta Decay Half-Life and Search for the Neutrinoless Double-Beta Decay of ${}^{48}\mathrm {Ca}$ with the NEMO-3 Detector
ASAKURA 2016
NP A946 171 Search for Double-beta Decay of ${}^{136}\mathrm {Xe}$ to Excited States of ${}^{136}\mathrm {Ba}$ with the KamLAND-Zen experiment
BELLI 2016
PR C93 045502 Search for 2$\beta $ Decay of ${}^{106}\mathrm {Cd}$ with an Enriched ${}^{106}\mathrm {Cd}$W Crystal Scintillator in Coincidence with Four HPGe Detectors
EBERT 2016
PR C94 024603 Results of a Search for Neutrinoless Double-${{\mathit \beta}}$ Decay using the COBRA Demonstrator
GANDO 2016
PRL 117 082503 Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen
AGOSTINI 2015A
EPJ C75 416 Results on ${{\mathit \beta}}{{\mathit \beta}}$ Decay with Emission of Two Neutrinos or Majorons in ${}^{76}\mathrm {Ge}$ from GERDA Phase I
ARNOLD 2015
PR D92 072011 Results of the Search for Neutrinoless Double-${{\mathit \beta}}$ Decay in ${}^{100}\mathrm {Mo}$ with the NEMO-3 Experiment
ALBERT 2014
PR C89 015502 An Improved Measurement of the 2${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Half-life of ${}^{136}\mathrm {Xe}$ with EXO-200
ALBERT 2014B
NAT 510 229 Search for Majorana Neutrinos with the First Two Years of EXO-200 Data
ARNOLD 2014
PR D89 111101 Search for Neutrinoless Double-beta Decay of ${}^{100}\mathrm {Mo}$ with the NEMO-3 Detector
KIDD 2014
PR C90 055501 Two-Neutrino Double-${{\mathit \beta}}$ Decay of ${}^{150}\mathrm {Nd}$ to Excited Final States in ${}^{150}\mathrm {Sm}$
BELLI 2013A
PR C87 034607 Search for 2${{\mathit \beta}}$ Decays of ${}^{96}\mathrm {Ru}$ and ${}^{104}\mathrm {Ru}$ by Ultralow-Background HPGe ${{\mathit \gamma}}$ Spectrometry at LNGS: Final Results
GAVRILYAK 2013
PR C87 035501 Indications of 2${{\mathit \nu}}2{{\mathit K}}$ Capture in ${}^{78}\mathrm {Kr}$
ANDREOTTI 2012
PR C85 045503 Search for Double-${{\mathit \beta}}$ Decay of ${}^{130}\mathrm {Te}$ to the First $0{}^{+}{}^{}$ Excited State of ${}^{130}\mathrm {Xe}$ with the CUORICINO Experiment Bolometer Array
BELLI 2012A
PR C85 044610 Search for Double-${{\mathit \beta}}$ Decay Processes in ${}^{106}\mathrm {Cd}$ with the Help of a ${}^{106}\mathrm {Cd}{}^{}\mathrm {W}O_{4}$ Crystal Scintillator
GANDO 2012A
PR C85 045504 Measurement of the Double-${{\mathit \beta}}$ Decay Half-Life of ${}^{136}\mathrm {Xe}$ with the KamLAND-Zen Experiment
ARNOLD 2011
PRL 107 062504 Measurement of the ${{\mathit \beta}}{{\mathit \beta}}$ Decay Half-Life of ${}^{130}\mathrm {Te}$ with the NEMO-3 Detector
BARABASH 2011A
PAN 74 312 Investigation of Double-beta Decay with the NEMO-3 Detector
BARABASH 2011
PR C83 045503 Improved Limits on $\beta {}^{+}$EC and ECEC Processes in ${}^{112}\mathrm {Sn}$
BELLI 2011D
JP G38 115107 Final Results of an Experiment to Search for 2$\beta $ Processes in Zinc and Tungsten with the Help of Radiopure ${}^{}\mathrm {Zn}{}^{}\mathrm {W}$ Crystal Scintillators
RUKHADZE 2011
NP A852 197 New Limits on Double Beta Decay of ${}^{106}\mathrm {Cd}$
ARGYRIADES 2010
NP A847 168 Measurement of the Two Neutrino Double $\beta $ Decay Half-Life of ${}^{96}\mathrm {Zr}$ with the NEMO-3 Detector
BELLI 2010
NP A846 143 New Observation of 2${{\mathit \beta}}2{{\mathit \nu}}$ Decay of ${}^{100}\mathrm {Mo}$ to the 0${}^{+}_{1}$ Level of ${}^{100}\mathrm {Ru}$ in the ARMONIA Experiment
BELLI 2009A
NP A826 256 Search for Double ${{\mathit \beta}}$ Decay of Zinc and Tungsten with Low Background ZnWO$_{4}$ Crystal Scintillators
KIDD 2009
NP A821 251 New Results for Double-$\beta $ Decay of ${}^{100}\mathrm {Mo}$ to Excited Final States of ${}^{100}\mathrm {Ru}$ using the TUNL-ITEP Apparatus
BELLI 2008
PL B658 193 Search for 2$\beta $ Processes in ${}^{64}\mathrm {Zn}$ with the Help of ZnWO$_{4}$ Crystal Scintillator
BELLI 2008B
EPJ A36 167 Search for Double-$\beta $ Decay Processes in ${}^{108}\mathrm {Cd}$ and ${}^{114}\mathrm {Cd}$ with the Help of the Low-Background CdWO-4 Crystal Scintillator
UMEHARA 2008
PR C78 058501 Neutrino-less Double-$\beta $ Decay of ${}^{48}\mathrm {Ca}$ Studied by CaF$_{2}$(Eu) Scintillators
ARNOLD 2007
NP A781 209 Measurement of Double beta Decay of ${}^{100}\mathrm {Mo}$ to Excited States in the NEMO-3 Experiment
KLAPDOR-KLEINGROTHAUS 2006A
MPL A21 1547 The Evidence for the Observation of 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Decay: the Identification of 0 ${{\mathit \nu}}{{\mathit \beta}}{{\mathit \beta}}$ Events from the Full Spectra
ARNABOLDI 2005
PRL 95 142501 New Limit on the Neutrinoless $\beta \beta $ Decay of ${}^{130}\mathrm {Te}$
ARNOLD 2005A
PRL 95 182302 First Results of the Search for Neutrinoless Double-Beta Decay with the NEMO 3 Detector
ARNOLD 2004
JETPL 80 377 Study of 2${{\mathit \beta}}$ Decay of ${}^{100}\mathrm {Mo}$ and ${}^{82}\mathrm {Se}$ using the NEMO3 Detector
BARABASH 2004
JETPL 79 10 Double Beta Decay of ${}^{150}\mathrm {ND}$ to the First 0${}^{+}$ Excited State of ${}^{150}\mathrm {SM}$
ARNABOLDI 2003
PL B557 167 A Calorimetric Search on Double beta Decay of ${}^{130}\mathrm {Te}$
DANEVICH 2003
PR C68 035501 Search for 2$\beta $ Decay of Cadmium and Tungsten Isotopes: Final Results of the Solotvina Experiment
AALSETH 2002B
PR D65 092007 The IGEX ${}^{76}\mathrm {Ge}$ Neutrinoless Double beta Decay Experiment: Prospects for Next Generation Experiments
BERNABEI 2002D
PL B546 23 Investigation of $\beta \beta $ Decay Modes in ${}^{134}\mathrm {Xe}$ and ${}^{135}\mathrm {Xe}$
DANEVICH 2001
NP A694 375 Quest for Double $\beta $ Decay of ${}^{160}\mathrm {Gd}$ and ${}^{}\mathrm {Ce}$ Isotopes
KLAPDOR-KLEINGROTHAUS 2001
EPJ A12 147 Latest Results from the Heidelberg-Moscow Double $\beta $ Decay Experiment
WIESER 2001
PR C64 024308 Evidence of the Double $\beta $ Decay of ${}^{96}\mathrm {Zi}$ Measured in $1.8 \times 10^{9}$ Year Old Zircons
BRUDANIN 2000
PL B495 63 Search for Double $\beta $ Decay of ${}^{48}\mathrm {Ca}$ in the TGV Experiment
ARNOLD 1999
NP A658 299 Double $\beta $ Decay of ${}^{96}\mathrm {Zr}$
ARNOLD 1998
NP A636 209 Double beta Decay of ${}^{82}\mathrm {Se}$
DESILVA 1997
PR C56 2451 Double $\beta $ Decays of ${}^{100}\mathrm {Mo}$ and ${}^{150}\mathrm {Nd}$
BALYSH 1996
PRL 77 5186 Double $\beta $ Decay of ${}^{48}\mathrm {Ca}$
EJIRI 1995
JPSJ 64 339 Double $\beta $ Decays of ${}^{116}\mathrm {Cd}$
BERNATOWICZ 1992
PRL 69 2341 Neutrino Mass Limits from a Precise Determination of $\beta $ $\beta $ Decay Rates of ${}^{128}\mathrm {Te}$ and ${}^{130}\mathrm {Te}$
TURKEVICH 1991
PRL 67 3211 Double $\beta $ Decay of ${}^{238}\mathrm {U}$
LIN 1988B
NP A481 484 Double ${{\mathit \beta}}$ Decay of ${}^{128}\mathrm {Te}$ and ${}^{130}\mathrm {Te}$