${{\widetilde{\mathit \chi}}_{{1}}^{0}}-{{\mathit p}}$ elastic cross section

Experimental results on the ${{\widetilde{\mathit \chi}}_{{1}}^{0}}-{{\mathit p}}$ elastic cross section are evaluated at ${\mathit m}_{{{\widetilde{\mathit \chi}}_{{1}}^{0}}}$=100 GeV. The experimental results on the cross section are often mass dependent. Therefore, the mass and cross section results are also given where the limit is strongest, when appropriate. Results are quoted separately for spin-dependent interactions (based on an effective 4-Fermi Lagrangian of the form ${{\overline{\mathit \chi}}}\gamma {}^{\mu }\gamma {}^{5}\chi {{\overline{\mathit q}}}\gamma _{\mu }\gamma {}^{5}{{\mathit q}}$) and spin-independent interactions (${{\overline{\mathit \chi}}}\chi $ ${{\overline{\mathit q}}}{{\mathit q}}$ ). For calculational details see GRIEST 1988B, ELLIS 1988D, BARBIERI 1989C, DREES 1993B, ARNOWITT 1996 , BERGSTROM 1996 , and BAER 1997 in addition to the theory papers listed in the Tables. For a description of the theoretical assumptions and experimental techniques underlying most of the listed papers, see the review on “Dark matter” in this “Review of Particle Physics,” and references therein. Most of the following papers use galactic halo and nuclear interaction assumptions from (LEWIN 1996 ).

Spin-independent interactions

INSPIRE   PDGID:
S046DM2
VALUE (pb) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<6.5 \times 10^{-11}$ 90 1
MENG
2021B
PNDX ${}^{}\mathrm {Xe}$
$<5 \times 10^{-10}$ 90 2
WANG
2020G
PNDX ${}^{}\mathrm {Xe}$
$<2.5 \times 10^{-8}$ 90 3
ABE
2019
XMAS ${}^{}\mathrm {Xe}$
$<3.9 \times 10^{-9}$ 90 4
AJAJ
2019
DEAP ${}^{}\mathrm {Ar}$
$<2 \times 10^{-8}$ 90 5
AMOLE
2019
PICO C$_{3}F_{8}$
$<2.25 \times 10^{-6}$ 90 6
ADHIKARI
2018
C100 ${}^{}\mathrm {NaI}$
$<1.14 \times 10^{-8}$ 90 7
AGNES
2018A
DS50 ${}^{}\mathrm {Ar}$
$<1.6 \times 10^{-8}$ 90 8
AGNESE
2018A
CDMS ${}^{}\mathrm {Ge}$
$<9 \times 10^{-11}$ 90 9
APRILE
2018
XE1T ${}^{}\mathrm {Xe}$
$<1.8 \times 10^{-10}$ 90 10
AKERIB
2017
LUX ${}^{}\mathrm {Xe}$
$<1.5 \times 10^{-9}$ 90 11
APRILE
2016B
X100 ${}^{}\mathrm {Xe}$
$<1.5 \times 10^{-9}$ 90 12
AKERIB
2014
LUX ${}^{}\mathrm {Xe}$
$10^{-11} - 10^{-7}$ 95 13
BUCHMUELLER
2014A
THEO
$<4.6 \times 10^{-6}$ 90 14
FELIZARDO
2014
SMPL C$_{2}$ClF$_{5}$
$10^{-11} - 10^{-8}$ 95 15
ROSZKOWSKI
2014
THEO
$<2.2 \times 10^{-6}$ 90 16
AGNESE
2013
CDMS ${}^{}\mathrm {Si}$
$<5 \times 10^{-8}$ 90 17
AKIMOV
2012
ZEP3 ${}^{}\mathrm {Xe}$
$1.6 \times 10^{-6}; 3.7 \times 10^{-5}$ 18
ANGLOHER
2012
CRES CaWO$_{4}$
$3 \times 10^{-12} \text{ to 3 }\times 10^{-9}$ 95 19
BECHTLE
2012
THEO
$<1.6 \times 10^{-7}$ 20
BEHNKE
2012
COUP CF$_{3}$I
$<2.3 \times 10^{-7}$ 90 21
KIM
2012
KIMS CsI
$<3.3 \times 10^{-8}$ 90 22
AHMED
2011A
${}^{}\mathrm {Ge}$
$<4.4 \times 10^{-8}$ 90 23
ARMENGAUD
2011
EDE2 ${}^{}\mathrm {Ge}$
$<1 \times 10^{-7}$ 90 24
ANGLE
2008
XE10 Xe
$<1 \times 10^{-6}$ 90
BENETTI
2008
WARP ${}^{}\mathrm {Ar}$
$<7.5 \times 10^{-7}$ 90 25
ALNER
2007A
ZEP2 ${}^{}\mathrm {Xe}$
$<2 \times 10^{-7}$ 26
AKERIB
2006A
CDMS Ge
$<90 \times 10^{-7}$
ALNER
2005
NAIA NaI Spin Indep.
$<12 \times 10^{-7}$ 27
ALNER
2005A
ZEPL
$<14 \times 10^{-7}$
SANGLARD
2005
EDEL Ge
$<4 \times 10^{-7}$ 28
AKERIB
2004
CDMS Ge
$2 \times 10^{-11} \text{ to 1.5 }\times 10^{-7}$ 95 29
BALTZ
2004
THEO
$2 \times 10^{-11} \text{ to 8 }\times 10^{-6}$ 30, 31
ELLIS
2004
THEO ${{\mathit \mu}}$ $>$ 0
$<5 \times 10^{-8}$ 32
PIERCE
2004A
THEO
$<2 \times 10^{-5}$ 33
AHMED
2003
NAIA NaI Spin Indep.
$<3 \times 10^{-6}$ 34
AKERIB
2003
CDMS Ge
$2 \times 10^{-13} \text{ to 2 }\times 10^{-7}$ 35
BAER
2003A
THEO
$<1.4 \times 10^{-5}$ 36
KLAPDOR-KLEIN..
2003
HDMS Ge
$<6 \times 10^{-6}$ 37
ABRAMS
2002
CDMS Ge
$1 \times 10^{-12} \text{ to 7 }\times 10^{-6}$ 30
KIM
2002B
THEO
$<3 \times 10^{-5}$ 38
MORALES
2002B
CSME Ge
$<1 \times 10^{-5}$ 39
MORALES
2002C
IGEX Ge
$<1 \times 10^{-6}$
BALTZ
2001
THEO
$<3 \times 10^{-5}$ 40
BAUDIS
2001
HDMS Ge
$<7 \times 10^{-6}$ 41
BOTTINO
2001
THEO
$<1 \times 10^{-8}$ 42
CORSETTI
2001
THEO tan $\beta {}\leq{}$25
$5 \times 10^{-10} \text{ to 1.5 }\times 10^{-8}$ 43
ELLIS
2001C
THEO tan $\beta {}\leq{}$10
$<4 \times 10^{-6}$ 42
GOMEZ
2001
THEO
$2 \times 10^{-10} \text{ to 1 }\times 10^{-7}$ 42
LAHANAS
2001
THEO
$<3 \times 10^{-6}$
ABUSAIDI
2000
CDMS Ge, Si
$<6 \times 10^{-7}$ 44
ACCOMANDO
2000
THEO
45
BERNABEI
2000
DAMA NaI
$2.5 \times 10^{-9} \text{ to 3.5 }\times 10^{-8}$ 46
FENG
2000
THEO tan $\beta $=10
$<1.5 \times 10^{-5}$
MORALES
2000
IGEX Ge
$<4 \times 10^{-5}$
SPOONER
2000
UKDM NaI
$<7 \times 10^{-6}$
BAUDIS
1999
HDMO ${}^{76}\mathrm {Ge}$
$<7 \times 10^{-6}$
BERNABEI
1998C
DAMA Xe
1  Commissioning Run for PandaX-4T. The strongest limit is $3.8 \times 10^{-11}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 40 GeV.
2  WANG 2020G strongest limit is $2.2 \times 10^{-10}$ pb at 30 GeV using 132 ton-day full exposure of PandaX-II. This updates CUI 2017A, though the results here provide weaker constraints.
3  The strongest upper limit is $2.2 \times 10^{-8}$ pb at 60 GeV.
4  This updates AMAUDRUZ 2018 .
5  This updates AMOLE 2016 .
6  The strongest limit is $2.05 \times 10^{-6}$ at m = 60 GeV.
7  The strongest limit is $1.09 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 126 GeV. This updates AGNES 2015 .
8  The strongest limit is $1.0 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 46 GeV. This updates AGNESE 2015B.
9  Based on 278.8 days of data collection. The strongest limit is $4.1 \times 10^{-11}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 30 GeV. This updates APRILE 2017G.
10  AKERIB 2017 . The strongest limit is $1.1 \times 10^{-10}$ pb at 50 GeV. This updates AKERIB 2016 .
11  The strongest limit is $1.1 \times 10^{-9}$ pb at 50 GeV. This updates APRILE 2012 .
12  The strongest upper limit is $7.6 \times 10^{-10}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 33 GeV.
13  Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb${}^{-1}$ 8 TeV and the 5 fb${}^{-1}$ 7 TeV LHC data and the LUX data.
14  The strongest limit is $3.6 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ = 35 GeV. Felizardo 2014 updates Felizardo 2012.
15  Predictions for the spin-independent elastic cross section based on a Bayesian approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 20 fb${}^{-1}$ LHC data and LUX.
16  AGNESE 2013 presents 90$\%$ CL limits on the elastic cross section for masses in the range $7 - 100$ GeV using the ${}^{}\mathrm {Si}$ based detector. The strongest upper limit is $1.8 \times 10^{-6}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 50 GeV. This limit is improved to $7 \times 10^{-7}$ pb in AGNESE 2013A.
17  This result updates LEBEDENKO 2009 . The strongest limit is $3.9 \times 10^{-8}$ pb at ${\mathit m}_{{{\mathit \chi}}}$ = 52 GeV.
18  ANGLOHER 2012 presents results of 730 kg days from the CRESST-II dark matter detector. They find two maxima in the likelihood function corresponding to best fit WIMP masses of 25.3 and 11.6 GeV with elastic cross sections of $1.6 \times 10^{-6}$ and $3.7 \times 10^{-5}$ pb respectively, see their Table 4. The statistical significance is more than 4$\sigma $. ANGLOHER 2012 updates ANGLOHER 2009
19  Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry using the 5 fb${}^{-1}$ LHC data and XENON100.
20  The strongest limit is $1.4 \times 10^{-7}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 60 GeV.
21  This result updates LEE 2007A. The strongest limit is $2.1 \times 10^{-7}$ at ${\mathit m}_{{{\mathit \chi}}}$ = 70 GeV.
22  AHMED 2011A gives combined results from CDMS and EDELWEISS. The strongest limit is at ${\mathit m}_{{{\mathit \chi}}}$ = 90 GeV.
23  ARMENGAUD 2011 updates result of ARMENGAUD 2010 . Strongest limit at ${\mathit m}_{{{\mathit \chi}}}$ = 85$~$GeV.
24  The strongest upper limit is $5.1 \times 10^{-8}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV. The values quoted here are based on the analysis performed in ANGLE 2008 with the update from SORENSEN 2009 .
25  The strongest upper limit is $6.6 \times 10^{-7}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 65 GeV.
26  AKERIB 2006A updates the results of AKERIB 2005 . The strongest upper limit is $1.6 \times 10^{-7}~$pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\approx{}$ 60 GeV.
27  The strongest upper limit is also close to $1.0 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}$ $\simeq{}$ 70 GeV. BENOIT 2006 claim that the discrimination power of ZEPLIN-I measurement (ALNER 2005A) is not reliable enough to obtain a limit better than $1 \times 10^{-3}$ pb. However, SMITH 2006 do not agree with the criticisms of BENOIT 2006 .
28  AKERIB 2004 is incompatible with BERNABEI 2000 most likely value, under the assumption of standard WIMP-halo interactions. The strongest upper limit is $4 \times 10^{-7}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$60 GeV.
29  Predictions for the spin-independent elastic cross section in the framework of ${{\mathit N}}$ = 1 supergravity models with radiative breaking of the electroweak gauge symmetry.
30  KIM 2002 and ELLIS 2004 calculate the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses.
31  In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes $2 \times 10^{-6}$ ($2 \times 10^{-11}$ when constraint from the BNL $\mathit g−$2 experiment are included), see ELLIS 2003E. ELLIS 2005 display the sensitivity of the elastic scattering cross section to the ${{\mathit \pi}}$-Nucleon ${{\mathit \Sigma}}$ term.
32  PIERCE 2004A calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in the framework of models with very heavy scalar masses. See Fig. 2 of the paper.
33  The strongest upper limit is $1.8 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\approx{}$80 GeV.
34  Under the assumption of standard WIMP-halo interactions, Akerib 03 is incompatible with BERNABEI 2000 most likely value at the 99.98$\%$ CL. See Fig. 4.
35  BAER 2003A calculates the ${{\mathit \chi}}{{\mathit p}}$ elastic scattering cross section in several models including the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
36  The strongest upper limit is $7 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
37  ABRAMS 2002 is incompatible with the DAMA most likely value at the 99.9$\%$ CL. The strongest upper limit is $3 \times 10^{-6}~$pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$30 GeV.
38  The strongest upper limit is $2 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$40 GeV.
39  The strongest upper limit is $7 \times 10^{-6}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$46 GeV.
40  The strongest upper limit is $1.8 \times 10^{-5}$ pb and occurs at ${\mathit m}_{{{\mathit \chi}}}\simeq{}$32 GeV
41  BOTTINO 2001 calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of the following supersymmetric models: $\mathit N$=1 supergravity with the radiative breaking of the electroweak gauge symmetry, $\mathit N$=1 supergravity with nonuniversal scalar masses and an effective MSSM model at the electroweak scale.
42  Calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry.
43  ELLIS 2001C calculates the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. ELLIS 2002B find a range $2 \times 10^{-8} - 1.5 \times 10^{-7}$ at tan $\beta $=50. In models with nonuniversal Higgs masses, the upper limit to the cross section is $4 \times 10^{-7}$.
44  ACCOMANDO 2000 calculate the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of minimal $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry. The limit is relaxed by at least an order of magnitude when models with nonuniversal scalar masses are considered. A subset of the authors in ARNOWITT 2002 updated the limit to $<9 \times 10^{-8}$ (tan $\beta $ $<55$).
45  BERNABEI 2000 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at 4$\sigma $ and are consistent, for a particular model framework quoted there, with ${\mathit m}_{{{\mathit X}^{0}}}=44$ ${}^{+12}_{-9}$ GeV and a spin-independent ${{\mathit X}^{0}}$-proton cross section of ($5.4$ $\pm1.0$) $ \times 10^{-6}~$pb. See also BERNABEI 2001 and BERNABEI 2000C.
46  FENG 2000 calculate the ${{\mathit \chi}}-{{\mathit p}}$ elastic scattering cross section in the framework of $\mathit N$=1 supergravity models with radiative breaking of the electroweak gauge symmetry with a particular emphasis on focus point models. At tan $\beta $=50, the range is $8 \times 10^{-8} - 4 \times 10^{-7}$.
References:
MENG 2021B
PRL 127 261802 Dark Matter Search Results from the PandaX-4T Commissioning Run
WANG 2020G
CP C44 125001 Results of dark matter search using the full PandaX-II exposure
ABE 2019
PL B789 45 A direct dark matter search in XMASS-I
AJAJ 2019
PR D100 022004 Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB
AMOLE 2019
PR D100 022001 Dark Matter Search Results from the Complete Exposure of the PICO-60 C$_3$F$_8$ Bubble Chamber
ADHIKARI 2018
NAT 564 83 An experiment to search for dark-matter interactions using sodium iodide detectors
AGNES 2018A
PR D98 102006 DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon
AGNESE 2018A
PRL 120 061802 Results from the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at Soudan
APRILE 2018
PRL 121 111302 Dark Matter Search Results from a One Ton-Year Exposure of XENON1T
AKERIB 2017
PRL 118 021303 Results from a Search for Dark Matter in the Complete LUX Exposure
APRILE 2016B
PR D94 122001 XENON100 Dark Matter Results from a Combination of 477 Live Days
AKERIB 2014
PRL 112 091303 First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility
BUCHMUELLER 2014A
EPJ C74 2922 The CMSSM and NUHM1 after LHC Run 1
FELIZARDO 2014
PR D89 072013 The SIMPLE Phase II Dark Matter Search
ROSZKOWSKI 2014
JHEP 1408 067 .What Next for the CMSSM and the NUHM: Improved Prospects for Superpartner and Dark Matter Detection
AGNESE 2013
PR D88 031104 Silicon Detector Results from the First Five-Tower Run of CDMS II
AKIMOV 2012
PL B709 14 WIMP-Nucleon Cross-Section Results from the Second Science Run of ZEPLIN-II
ANGLOHER 2012
EPJ C72 1971 Results from 730 kg days of the CRESST-II Dark Matter Search
BECHTLE 2012
JHEP 1206 098 Constrained Supersymmetry After Two Years of LHC Data: a Global View with Fittino
BEHNKE 2012
PR D86 052001 First Dark Matter Search Results from a 4-kg CF$_{3}$I Bubble Chamber Operated in a Deep Underground Site
Also
PR D90 079902 (errat.) Erratum to BEHNKE 2012 : First Dark Matter Search Results from a 4-kg CF3I Bubble Chamber Operated in a Deep Underground Site
KIM 2012
PRL 108 181301 New Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors
AHMED 2011A
PR D84 011102 Combined Limits on WIMPs from the CDMS and EDELWEISS Experiments
ARMENGAUD 2011
PL B702 329 Final Results of the EDELWEISS-II WIMP Search using a 4-kg Array of Cryogenic Germanium Detectors with Interleaved Electrodes
ANGLE 2008
PRL 100 021303 First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory
BENETTI 2008
ASP 28 495 First Results from a Dark Matter Search with Liquid Argon at 87 K in the Gran Sasso Underground Laboratory
ALNER 2007A
ASP 28 287 First Limits on WIMP Nuclear Recoil Signals in ZEPLIN-II: A Two-Phase Xenon Detector for Dark Matter Detection
AKERIB 2006A
PRL 96 011302 Limits on Spin-Independent Interactions of Weakly Interacting Massive Particles with Nucleons from the Two-Tower Run of the Cryogenic Dark Matter Search
ALNER 2005
PL B616 17 Limits on WIMP Cross-Sections from the NAIAD Experiment at the Boulby Underground Laboratory
ALNER 2005A
ASP 23 444 First Limits on Nuclear Recoil Events from the ZEPLIN I Galactic Dark Matter Detector
SANGLARD 2005
PR D71 122002 Final Results of the EDELWEISS-I Dark Matter Search with Cryogenic Heat-and-Ionization Ge Detectors
AKERIB 2004
PRL 93 211301 First Results from the Cryogenic Dark Matter Search in the Soudan Underground Laboratory
BALTZ 2004
JHEP 0410 052 Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter
ELLIS 2004
PR D69 015005 High Energy Constraints on the Direct Detection of MSSM Neutralinos
PIERCE 2004A
PR D70 075006 Dark Matter in the Finely Tuned Minimal Supersymmetric Standard Models
AHMED 2003
ASP 19 691 The NAIAD Experiment for WIMP Searches at Boulby Mine and Recent Result
AKERIB 2003
PR D68 082002 New Results from the Cryogenic Dark Matter Search Experiment
BAER 2003A
JCAP 0309 007 Direct Detection of Dark Matter in Supersymmetric Models
KLAPDOR-KLEINGROTHAUS 2003
ASP 18 525 First Results from the HDMS Experiment in the Final Setup
ABRAMS 2002
PR D66 122003 Exclusion Limits on the WIMP Nucleon Cross Section from the Cryogenic Dark Matter Search
KIM 2002B
JHEP 0212 034 Upper and Lower Limits on Neutralino WIMP Mass and Spin Independent Scattering Cross Section, and Impact of New ($\mathit g-2)(_{{{\mathit \mu}}}$ Measurement
MORALES 2002B
ASP 16 325 Particle Dark Matter and Solar Axion Searches with a Small Germanium Detector at the Canfranc Underground Laboratory
MORALES 2002C
PL B532 8 Improved Constraints on WIMPs from the Internationsl Germanium Experiment IGEX
BALTZ 2001
PRL 86 5004 Implications of Muon Anomalous Magnetic Moment for Supersymmetric Dark Matter
BAUDIS 2001
PR D63 022001 First Results from the Heidelberg Dark Matter Search Experiment
BOTTINO 2001
PR D63 125003 Probing the Supersymmetric Parameter Space by WIMP Direct Detection
CORSETTI 2001
PR D64 125010 Gaugino Mass Nonuniversality and Dark Matter in SUGRA, Strings and D-Brane Model
ELLIS 2001C
PR D63 065016 Exploration of Elastic Scattering Rates for Supersymmetric Dark Matter
GOMEZ 2001
PL B512 252 Cold Dark Matter Detection in SUSY Models of Large tan $\beta $
LAHANAS 2001
PL B518 94 Dark Matter Direct Searches and the Anomalous Magnetic Moment of Muon
ABUSAIDI 2000
PRL 84 5699 Exclusion Limits on the WIMP Nucleon Cross Section from the Cryogenic Dark Matter Search
ACCOMANDO 2000
NP B585 124 Neutralino Proton Cross Sections in Supergravity Models
BERNABEI 2000
PL B480 23 Search for WIMP Annual Modulation Signature: Result from DAMA/NAI-3 and DAMA/NAI-4 and the Global Combined Analysis
Also
PL B509 197 Investigating the DAMA Annual Modulation Data in a Mixed Coupling Framework
Also
EPJ C18 283 On the Investigation of Possible Systematics in WIMP Annual Modulation Search
FENG 2000
PL B482 388 Neutralino Dark Matter in Focus Point Supersymmetry
MORALES 2000
PL B489 268 New Constraints on WIMPs from the Canfranc IGEX Dark Matter Search
SPOONER 2000
PL B473 330 NaI Dark Matter Limits and the NAIAD Array $−$ a Detector with Improved Sensitivity to WIMPs using Unencapsulated NaI
BAUDIS 1999
PR D59 022001 New Limits on Dark Matter WIMPs from the Heidelberg-Moscow Experiment
BERNABEI 1998C
PL B436 379 New Limits on Particle Dark Matter Search with a Liquid Xenon Target Scintillator