Search for Relic Invisible Axions INSPIRE search

Limits are for [$\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}]{}^{2}\rho _{\mathit A}$ where $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ denotes the axion two-photon coupling, $\mathit L_{{\mathrm {int}}}$ = $−$ ${\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }\over 4}{{\mathit \phi}_{{A}}}{{\mathit F}}_{ {{\mathit \mu}} {{\mathit \nu}} }{{\widetilde{\mathit F}}}{}^{ {{\mathit \mu}} {{\mathit \nu}} }$ = $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }\phi _{\mathit A}\mathbf {E}\cdot{}\mathbf {B}$, and $\rho _{\mathit A}$ is the axion energy density near the earth.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
1
BRANCA
2017
AURG ${\mathit m}_{{{\mathit S}^{0}}}$ = $3.5 - 3.9$ peV
$<3 \times 10^{-42}$ 90 2
BRUBAKER
2017
${\mathit m}_{{{\mathit A}^{0}}}$ = $23.55 - 24.0$ $\mu $eV
$<8.6 \times 10^{-42}$ 90 3
HOSKINS
2016
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ =$3.36 - 3.52$ or $3.55 - 3.69$ $\mu $eV
4
BECK
2013
${\mathit m}_{{{\mathit A}^{0}}}$ = 0.11 meV
$<3.5 \times 10^{-43}$ 5
HOSKINS
2011
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.3 - 3.69 \times 10^{-6}$ eV
$<2.9 \times 10^{-43}$ 90 6
ASZTALOS
2010
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.34 - 3.53$ eV
$<1.9 \times 10^{-43}$ 98 7
DUFFY
2006
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.98 - 2.17$ eV
$<5.5 \times 10^{-43}$ 90 8
ASZTALOS
2004
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.9 - 3.3$ eV
9
KIM
1998
THEO
$<2 \times 10^{-41}$ 10
HAGMANN
1990
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = ($5.4 - 5.9){}10^{-6}$ eV
$<6.3 \times 10^{-42}$ 95 11
WUENSCH
1989
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = ($4.5 - 10.2){}10^{-6}$ eV
$<5.4 \times 10^{-41}$ 95 11
WUENSCH
1989
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = ($11.3 - 16.3){}10^{-6}$ eV
1  BRANCA 2017 look for modulations of the fine-structure constant and the electron mass due to moduli dark matter by using the cryogenic resonant-mass AURIGA detector. The limit on the assumed dilatonic coupling implies $\mathit G_{ {{\mathit S}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $<$ $1.5 \times 10^{-24}$ GeV${}^{-1}$ for the scalar to two-photon coupling. See Fig. 5 for the mass-dependent limits.
2  BRUBAKER 2017 used a microwave cavity detector at the Yale Wright Laboratory to search for dark matter axions. See Fig. 3 for the mass-dependent limits.
3  HOSKINS 2016 is analogous to DUFFY 2006 . See Fig.$~$12 for mass-dependent limits in terms of the local dark matter density.
4  BECK 2013 argues that dark-matter axions passing through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. A measurement by HOFFMANN 2004 [Physical Review B70 180503 (2004)] is interpreted in terms of subdominant dark matter axions with ${\mathit m}_{{{\mathit A}^{0}}}$ = 0.11 meV.
5  HOSKINS 2011 is analogous to DUFFY 2006 . See Fig.$~$4 for the mass-dependent limit in terms of the local density.
6  ASZTALOS 2010 used the upgraded detector of ASZTALOS 2004 to search for halo axions. See their Fig.$~$5 for the ${\mathit m}_{{{\mathit A}^{0}}}$ dependence of the limit.
7  DUFFY 2006 used the upgraded detector of ASZTALOS 2004 , while assuming a smaller velocity dispersion than the isothermal model as in Eq. (8) of their paper. See Fig. 10 of their paper on the axion mass dependence of the limit.
8  ASZTALOS 2004 looked for a conversion of halo axions to microwave photons in magnetic field. At 90$\%$ CL, the KSVZ axion cannot have a local halo density more than 0.45~GeV/cm${}^{3}$ in the quoted mass range. See Fig.~7 of their paper on the axion mass dependence of the limit.
9  KIM 1998 calculated the axion-to-photon couplings for various axion models and compared them to the HAGMANN 1990 bounds. This analysis demonstrates a strong model dependence of $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ and hence the bound from relic axion search.
10  HAGMANN 1990 experiment is based on the proposal of SIKIVIE 1983 .
11  WUENSCH 1989 looks for condensed axions near the earth that could be converted to photons in the presence of an intense electromagnetic field via the Primakoff effect, following the proposal of SIKIVIE 1983 . The theoretical prediction with [$\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}]{}^{2}$ = $2 \times 10^{-14}$ MeV${}^{-4}$ (the three generation DFSZ model) and $\rho _{\mathit A}$ = 300 MeV/cm${}^{3}$ that makes up galactic halos gives ($\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}){}^{2}$ $\rho _{\mathit A}$ = $4 \times 10^{-44}$. Note that our definition of $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ is (1/4$\pi $) smaller than that of WUENSCH 1989 .
  References:
BRANCA 2017
PRL 118 021302 Search for Light Scalar Dark Matter Candidate with AURIGA Detector
BRUBAKER 2017
PRL 118 061302 First Results from a Microwave Cavity Axion Search at 24 Micro-eV
HOSKINS 2016
PR D94 082001 Modulation Sensitive Search for Nonvirialized Dark-Matter Axions
BECK 2013
PRL 111 231801 Possible Resonance Effect of Axionic Dark Matter in Josephson Junctions
HOSKINS 2011
PR D84 121302 Search for Nonvirialized Axionic Dark Matter
ASZTALOS 2010
PRL 104 041301 A SQUID-Based Microwave Cavity Search for Dark-Matter Axions
DUFFY 2006
PR D74 012006 High Resolution Search for Dark-Matter Axions
ASZTALOS 2004
PR D69 011101 An Improved RF Cavity Search for Halo Axions
KIM 1998
PR D58 055006 Constraints on Very Light Axions from Cavity Experiments
HAGMANN 1990
PR D42 1297 Results from a Search for Cosmic Axions
WUENSCH 1989
PR D40 3153 Results of a Laboratory Search for Cosmic Axions and Other Weakly-Coupled Light Particles
HOFFMANN 2004
PR B70 180503 Mesoscopic Transition in the Shot Noise of Diffusive S/N/S Junctions
SIKIVIE 1983
PRL 51 1415 Experimental Tests of the ``Invisible'' Axion