Invisible ${{\mathit A}^{0}}$ (Axion) MASS LIMITS from Astrophysics and Cosmology INSPIRE search

$\mathit v_{1}$ = $\mathit v_{2}$ is usually assumed ($\mathit v_{\mathit i}$ = vacuum expectation values). For a review of these limits, see RAFFELT 1991 and TURNER 1990 . In the comment lines below, D and K refer to DFSZ and KSVZ axion types, discussed in the above minireview.
VALUE (eV) CL% DOCUMENT ID TECN  COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
$<0.67$ 95 1
ARCHIDIACONO
2013A
COSM K, hot dark matter
$\text{none } 0.7 - 3 \times 10^{5}$ 2
CADAMURO
2011
COSM ${}^{}\mathrm {D}$ abundance
$<105$ 90 3
DERBIN
2011A
CNTR D, solar axion
4
ANDRIAMONJE
2010
CAST K, solar axions
$<0.72$ 95 5
HANNESTAD
2010
COSM K, hot dark matter
6
ANDRIAMONJE
2009
CAST K, solar axions
$<191$ 90 7
DERBIN
2009A
CNTR K, solar axions
$<334$ 95 8
KEKEZ
2009
HPGE K, solar axions
$<1.02$ 95 9
HANNESTAD
2008
COSM K, hot dark matter
$<1.2$ 95 10
HANNESTAD
2007
COSM K, hot dark matter
$<0.42$ 95 11
MELCHIORRI
2007A
COSM K, hot dark matter
$<1.05$ 95 12
HANNESTAD
2005A
COSM K, hot dark matter
$3\text{ to }20 $ 13
MOROI
1998
COSM K, hot dark matter
$<0.007$ 14
BORISOV
1997
ASTR D, neutron star
$<4$ 15
KACHELRIESS
1997
ASTR D, neutron star cooling
$<(0.5 - 6){\times }\text{ 10^}{-3}$ 16
KEIL
1997
ASTR SN 1987A
$<0.018$ 17
RAFFELT
1995
ASTR D, red giant
$<0.010$ 18
ALTHERR
1994
ASTR D, red giants, white dwarfs
19
CHANG
1993
ASTR K, SN 1987A
$<0.01$
WANG
1992
ASTR D, white dwarf
$<0.03$
WANG
1992C
ASTR D, C-O burning
$\text{none 3 - 8}$ 20
BERSHADY
1991
ASTR D, K, intergalactic light
$<10$ 21
KIM
1991C
COSM D, K, mass density of the universe, supersymmetry
22
RAFFELT
1991B
ASTR D,K, SN 1987A
$<1 \times 10^{-3}$ 23
RESSELL
1991
ASTR K, intergalactic light
$\text{none } 10^{-3} - 3$
BURROWS
1990
ASTR D,K, SN 1987A
24
ENGEL
1990
ASTR D,K, SN 1987A
$<0.02$ 25
RAFFELT
1990D
ASTR D, red giant
$<1 \times 10^{-3}$ 26
BURROWS
1989
ASTR D,K, SN 1987A
$<(1.4 - 10){\times }\text{ 10^}{-3}$ 27
ERICSON
1989
ASTR D,K, SN 1987A
$<3.6 \times 10^{-4}$ 28
MAYLE
1989
ASTR D,K, SN 1987A
$<12$
CHANDA
1988
ASTR D, Sun
$<1 \times 10^{-3}$
RAFFELT
1988
ASTR D,K, SN 1987A
29
RAFFELT
1988B
ASTR red giant
$<0.07$
FRIEMAN
1987
ASTR D, red giant
$<0.7$ 30
RAFFELT
1987
ASTR K, red giant
$\text{< 2-5}$
TURNER
1987
COSM K, thermal production
$<0.01$ 31
DEARBORN
1986
ASTR D, red giant
$<0.06$
RAFFELT
1986
ASTR D, red giant
$<0.7$ 32
RAFFELT
1986
ASTR K, red giant
$<0.03$
RAFFELT
1986B
ASTR D, white dwarf
$<1$ 33
KAPLAN
1985
ASTR K, red giant
$\text{<0.003 - 0.02}$
IWAMOTO
1984
ASTR D, K, neutron star
$>1 \times 10^{-5}$
ABBOTT
1983
COSM D,K, mass density of the universe
$>1 \times 10^{-5}$
DINE
1983
COSM D,K, mass density of the universe
$<0.04$
ELLIS
1983B
ASTR D, red giant
$>1 \times 10^{-5}$
PRESKILL
1983
COSM D,K, mass density of the universe
$<0.1$
BARROSO
1982
ASTR D, red giant
$<1$ 34
FUKUGITA
1982
ASTR D, stellar cooling
$<0.07$
FUKUGITA
1982B
ASTR D, red giant
1  ARCHIDIACONO 2013A is analogous to HANNESTAD 2005A. The limit is based on the CMB temperature power spectrum of the Planck data, the CMB polarization from the WMAP 9-yr data, the matter power spectrum from SDSS-DR7, and the local Hubble parameter measurement by the Carnegie Hubble program.
2  CADAMURO 2011 use the deuterium abundance to show that the ${\mathit m}_{{{\mathit A}^{0}}}$ range 0.7$~$eV -- 300$~$keV is excluded for axions, complementing HANNESTAD 2010 .
3  DERBIN 2011A look for solar axions produced by Compton and bremsstrahlung processes, in the resonant excitation of ${}^{169}\mathrm {Tm}$, constraining the axion-electron ${\times }$ axion nucleon couplings.
4  ANDRIAMONJE 2010 search for solar axions produced from ${}^{7}\mathrm {Li}$ (478 keV) and ${}^{}\mathrm {D}({{\mathit p}},{{\mathit \gamma}}){}^{3}\mathrm {He}$ (5.5 MeV) nuclear transitions. They show limits on the axion-photon coupling for two reference values of the axion-nucleon coupling for ${\mathit m}_{{{\mathit A}}}<$ 100 eV.
5  This is an update of HANNESTAD 2008 including 7 years of WMAP data.
6  ANDRIAMONJE 2009 look for solar axions produced from the thermally excited 14.4 keV level of ${}^{57}\mathrm {Fe}$. They show limits on the axion-nucleon ${\times }$ axion-photon coupling assuming ${\mathit m}_{{{\mathit A}}}<$ 0.03 eV.
7  DERBIN 2009A look for Primakoff-produced solar axions in the resonant excitation of ${}^{169}\mathrm {Tm}$, constraining the axion-photon ${\times }$ axion-nucleon couplings.
8  KEKEZ 2009 look at axio-electric effect of solar axions in HPGe detectors. The one-loop axion-electron coupling for hadronic axions is used.
9  This is an update of HANNESTAD 2007 including 5 years of WMAP data.
10  This is an update of HANNESTAD 2005A with new cosmological data, notably WMAP (3 years) and baryon acoustic oscillations (BAO). Lyman-$\alpha $ data are left out, in contrast to HANNESTAD 2005A and MELCHIORRI 2007A, because it is argued that systematic errors are large. It uses Bayesian statistics and marginalizes over a possible neutrino hot dark matter component.
11  MELCHIORRI 2007A is analogous to HANNESTAD 2005A, with updated cosmological data, notably WMAP (3 years). Uses Bayesian statistics and marginalizes over a possible neutrino hot dark matter component. Leaving out Lyman-$\alpha $ data, a conservative limit is 1.4 eV.
12  HANNESTAD 2005A puts an upper limit on the mass of hadronic axion because in this mass range it would have been thermalized and contribute to the hot dark matter component of the universe. The limit is based on the CMB anisotropy from WMAP, SDSS large scale structure, Lyman $\alpha $, and the prior Hubble parameter from HST Key Project. A ${{\mathit \chi}^{2}}$ statistic is used. Neutrinos are assumed not to contribute to hot dark matter.
13  MOROI 1998 points out that a KSVZ axion of this mass range (see CHANG 1993 ) can be a viable hot dark matter of Universe, as long as the model-dependent $\mathit g_{ {{\mathit A}} {{\mathit \gamma}} }$ is accidentally small enough as originally emphasized by KAPLAN 1985 ; see Fig.$~$1.
14  BORISOV 1997 bound is on the axion-electron coupling $\mathit g_{\mathit ae}<1 \times 10^{-13}$ from the photo-production of axions off of magnetic fields in the outer layers of neutron stars.
15  KACHELRIESS 1997 bound is on the axion-electron coupling $\mathit g_{\mathit ae}<1 \times 10^{-10}$ from the production of axions in strongly magnetized neutron stars. The authors also quote a stronger limit, $\mathit g_{\mathit ae}<9 \times 10^{-13}$ which is strongly dependent on the strength of the magnetic field in white dwarfs.
16  KEIL 1997 uses new measurements of the axial-vector coupling strength of nucleons, as well as a reanalysis of many-body effects and pion-emission processes in the core of the neutron star, to update limits on the invisible-axion mass.
17  RAFFELT 1995 reexamined the constraints on axion emission from red giants due to the axion-electron coupling. They improve on DEARBORN 1986 by taking into proper account degeneracy effects in the bremsstrahlung rate. The limit comes from requiring the red giant core mass at helium ignition not to exceed its standard value by more than 5$\%$ ($0.025$ solar masses).
18  ALTHERR 1994 bound is on the axion-electron coupling $\mathit g_{\mathit ae}<1.5 \times 10^{-13}$, from energy loss via axion emission.
19  CHANG 1993 updates ENGEL 1990 bound with the Kaplan-Manohar ambiguity in $\mathit z={\mathit m}_{{{\mathit u}}}/{\mathit m}_{{{\mathit d}}}$ (see the Note on the Quark Masses in the Quark Particle Listings). It leaves the window $\mathit f_{\mathit A}=3 \times 10^{5}-3 \times 10^{6}$ GeV open. The constraint from Big-Bang Nucleosynthesis is satisfied in this window as well.
20  BERSHADY 1991 searched for a line at wave length from $3100 - 8300$ $Å$ expected from 2${{\mathit \gamma}}$ decays of relic thermal axions in intergalactic light of three rich clusters of galaxies.
21  KIM 1991C argues that the bound from the mass density of the universe will change drastically for the supersymmetric models due to the entropy production of saxion (scalar component in the axionic chiral multiplet) decay. Note that it is an $\mathit upperbound$ rather than a lowerbound.
22  RAFFELT 1991B argue that previous SN$~$1987A bounds must be relaxed due to corrections to nucleon bremsstrahlung processes.
23  RESSELL 1991 uses absence of any intracluster line emission to set limit.
24  ENGEL 1990 rule out $10^{-10}~{ {}\lesssim{} }$ $\mathit g_{\mathit AN}{ {}\lesssim{} }~10^{-3}$, which for a hadronic axion with EMC motivated axion-nucleon couplings corresponds to $2.5 \times 10^{-3}~$eV ${ {}\lesssim{} }{\mathit m}_{{{\mathit A}^{0}}}{ {}\lesssim{} }$ $2.5 \times 10^{4}~$eV. The constraint is loose in the middle of the range, i.e. for ${\mathit g}_{\mathit AN}$ $\sim{}~10^{-6}$.
25  RAFFELT 1990D is a re-analysis of DEARBORN 1986 .
26  The region ${\mathit m}_{{{\mathit A}^{0}}}{ {}\gtrsim{} }$ 2 eV is also allowed.
27  ERICSON 1989 considered various nuclear corrections to axion emission in a supernova core, and found a reduction of the previous limit (MAYLE 1988 ) by a large factor.
28  MAYLE 1989 limit based on naive quark model couplings of axion to nucleons. Limit based on couplings motivated by EMC measurements is 2$-$4 times weaker. The limit from axion-electron coupling is weak: see HATSUDA 1988B.
29  RAFFELT 1988B derives a limit for the energy generation rate by exotic processes in helium-burning stars $\epsilon $ $<$ 100 erg g${}^{−1}$ s${}^{-1}$, which gives a firmer basis for the axion limits based on red giant cooling.
30  RAFFELT 1987 also gives a limit ${\mathit g}_{\mathit A{{\mathit \gamma}}}$ $<$ $1 \times 10^{-10}$ GeV${}^{-1}$.
31  DEARBORN 1986 also gives a limit ${\mathit g}_{\mathit A{{\mathit \gamma}}}$ $<$ $1.4 \times 10^{-11}$ GeV${}^{-1}$.
32  RAFFELT 1986 gives a limit ${\mathit g}_{\mathit A{{\mathit \gamma}}}$ $<$ $1.1 \times 10^{-10}$ GeV${}^{-1}$ from red giants and $<2.4 \times 10^{-9}$ GeV${}^{-1}$ from the sun.
33  KAPLAN 1985 says ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 23 eV is allowed for a special choice of model parameters.
34  FUKUGITA 1982 gives a limit ${\mathit g}_{\mathit A{{\mathit \gamma}}}$ $<$ $2.3 \times 10^{-10}$ GeV${}^{-1}$.
  References:
ARCHIDIACONO 2013A
JCAP 1310 020 Axion Hot Dark Matter Bounds after Planck
CADAMURO 2011
JCAP 1102 003 Cosmological Bounds on sub-MeV Mass Axions
DERBIN 2011A
PR D83 023505 Constraints on the Axion-Electron Coupling for Solar Axions Produced by a Compton Process and Bremsstrahlung
ANDRIAMONJE 2010
JCAP 1003 032 Search for Solar Axion Emission from ${}^{7}\mathrm {Li}$ and ${{\mathit D}}({{\mathit p}},{{\mathit \gamma}}){}^{3}\mathrm {He}$ Nuclear Decays with the CAST ${{\mathit \gamma}}$-ray Calorimeter
HANNESTAD 2010
JCAP 1008 001 Neutrino and Axion Hot Dark Matter Bounds after WMAP-7
ANDRIAMONJE 2009
JCAP 0912 002 Search for 14.4 keV Solar Axions Emitted in the M1-Transition of ${}^{57}\mathrm {Fe}$ Nuclei with CAST
DERBIN 2009A
PL B678 181 Search for Solar Axions Produced by Primakoff Conversion using Resonant Absorption by Nuclei
KEKEZ 2009
PL B671 345 Search for Solar Hadronic Axions Produced by a Bremsstrahlung-like Process
HANNESTAD 2008
JCAP 0804 019 Cosmological Constraints on Neutrino plus Axion Hot Dark Matter: Update after WMAP-5
HANNESTAD 2007
JCAP 0708 015 Cosmological Constraints on Neutrino plus Axion Hot Dark Matter
MELCHIORRI 2007A
PR D76 041303 Improved Cosmological Bound on the Thermal Axion Mass
HANNESTAD 2005A
JCAP 0507 002 A New Cosmological Mass Limit on Thermal Relic Axions
MOROI 1998
PL B440 69 Axionic Hot Dark Matter in the Hadronic Axion Window
BORISOV 1997
JETP 83 868 Compton Production of Axions on Electrons in a Constant External Field
KACHELRIESS 1997
PR D56 1313 Axion Cyclotron Emissivity of Magnetized White Dwarfs and Neutron Stars
KEIL 1997
PR D56 2419 Fresh Look at Axions and SN1987a
RAFFELT 1995
PR D51 1495 Red Giant Bound on the Axion $−$ Electron Coupling Revisited
ALTHERR 1994
ASP 2 175 Axion Emission from Red Giants and White Dwarfs
CHANG 1993
PL B316 51 Hadronic Axion Window and the Big Bang Nucleosynthesis
WANG 1992C
PL B291 97 Constraints on Mass of the DFSZ Axions from the Carbon$−$Oxygen Burning Stage of Stars
WANG 1992
MPL A7 1497 Constraints of Axions from White Dwarf Cooling
BERSHADY 1991
PRL 66 1398 Telescope Search for Multi-eV Axions
KIM 1991C
PRL 67 3465 Effects of Decay of Scalar Partner of Axion on Cosmological Bounds of Axion Supermultiplet Properties
RAFFELT 1991B
PRL 67 2605 Multiple Scattering Suppression of the Bremsstrahlung Emission of Neutrinos and Axions in Supernovae
RESSELL 1991
PR D44 3001 Limits to the Radiative Decay of the Axion
BURROWS 1990
PR D42 3297 Axions and SN1987a: Axion Trapping
ENGEL 1990
PRL 65 960 Emission and Detectability of Hadronic Axions from SN1987a
RAFFELT 1990D
PR D41 1324 Axion Bremsstrahlung in Red Giants
BURROWS 1989
PR D39 1020 Axions and SN1987a
ERICSON 1989
PL B219 507 Axion Emission from SN1987a: Nuclear Physics Constraints
MAYLE 1989
PL B219 515 Updated Constraints on Axions from SN1987a
CHANDA 1988
PR D37 2714 Astrophysical Constraints on Axion and Majoron Couplings
RAFFELT 1988
PRL 60 1793 Boundson ExoticParticle Interactions from SN1987a
RAFFELT 1988B
PR D37 549 Bounds on Weakly Interacting Particles from Observational Lifetimes of Helium Burning Stars
FRIEMAN 1987
PR D36 2201 Axions and Stars
RAFFELT 1987
PR D36 2211 Bounds on Hadronic Axions from Stellar Evolution
TURNER 1987
PRL 59 2489 Thermal Production of not so Invisible Axions in the Early Universe
DEARBORN 1986
PRL 56 26 Astrophysical Constraints on the Couplings of Axions Majorons and Familons
RAFFELT 1986
PR D33 897 Astrophysical Axion Bounds Diminished by Screening Effects
RAFFELT 1986B
PL 166B 402 Axion Constraints from White Dwarf Cooling Times
KAPLAN 1985
NP B260 215 Opening the Axion Window
IWAMOTO 1984
PRL 53 1198 Axion Emission from Neutron Stars
ABBOTT 1983
PL 120B 133 A Cosmological Bound on the Invisible Axion
DINE 1983
PL 120B 137 The not so Harmless Axion
ELLIS 1983B
NP B223 252 Constraints on Light Particles from Stellar Evolution
PRESKILL 1983
PL 120B 127 Cosmology of the Invisible Axion
BARROSO 1982
PL 116B 247 Constraints on Light Axions
FUKUGITA 1982B
PR D26 1840 Astrophysical Constraints on a New Light Axion and other Weakly Interacting Particles
FUKUGITA 1982
PRL 48 1522 Light Pseudoscalar Particle and Stellar Energy Loss
MAYLE 1988
PL B203 188 Constraints on Axions from SN1987a
HATSUDA 1988B
PL B203 469 Axion Flux from Nascent Neutron Stars
RAFFELT 1991
PRPL 198 1 Astrophysical Methods to Constrain Axions and Other Novel Particle Phenomena