${{\mathit A}^{0}}$ (Axion) Searches in Quarkonium Decays

INSPIRE   PDGID:
S029AXQ
Decay or transition of quarkonium. Limits are for branching ratio.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<3.1 \times 10^{-7}$ 90 1
JIA
2022
BELL ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )
$<2.8 \times 10^{-8}$ 90 2
ABLIKIM
2016E
BES3 ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )
$<4 \times 10^{-7}$ 90 3
ABLIKIM
2012
BES3 ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ )
$<4.0 \times 10^{-5}$ 90 4
ANTREASYAN
1990C
CBAL ${{\mathit \Upsilon}{(1S)}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$
$<5 \times 10^{-5}$ 90 5
DRUZHININ
1987
ND ${{\mathit \phi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ )
$<2 \times 10^{-3}$ 90 6
DRUZHININ
1987
ND ${{\mathit \phi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ )
$<7 \times 10^{-6}$ 90 7
DRUZHININ
1987
ND ${{\mathit \phi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$ ( ${{\mathit A}^{0}}$ $\rightarrow$ missing)
$<1.4 \times 10^{-5}$ 90 8
EDWARDS
1982
CBAL ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit \gamma}}$
1  JIA 2022 limits between $3.1 \times 10^{-7} - 1.6 \times 10^{-5}$ were obtained for 0.22 GeV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 9.2 GeV. See their Fig. 4 for mass-dependent limits.
2  ABLIKIM 2016E limits between $2.8 - 495.3 \times 10^{-8}$ were obtained for 0.212 GeV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 3.0 GeV. See their Fig. 5 for mass-dependent limits.
3  ABLIKIM 2012 derived limits between $4 - 2.1$ for 0.212 GeV $<$ ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 3.0 GeV. See their Fig. 2(c) for mass-dependent limits.
4  ANTREASYAN 1990C assume that ${{\mathit A}^{0}}$ does not decay in the detector.
5  The first DRUZHININ 1987 limit is valid when ${\mathit \tau}_{{{\mathit A}^{0}}}/{\mathit m}_{{{\mathit A}^{0}}}$ $<$ $3 \times 10^{-13}$ s/MeV and ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 20 MeV.
6  The second DRUZHININ 1987 limit is valid when ${\mathit \tau}_{{{\mathit A}^{0}}}/{\mathit m}_{{{\mathit A}^{0}}}$ $<$ $5 \times 10^{-13}$ s/MeV and ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 20 MeV.
7  The third DRUZHININ 1987 limit is valid when ${\mathit \tau}_{{{\mathit A}^{0}}}/{\mathit m}_{{{\mathit A}^{0}}}$ $>7 \times 10^{-12}$ s/MeV and ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ 200 MeV.
8  EDWARDS 1982 looked for ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit A}^{0}}$ decays by looking for events with a single ${{\mathit \gamma}}$ $\lbrack{}$of energy $\sim{}$1/2 the ${{\mathit J / \psi}{(1S)}}$ mass$\rbrack{}$, plus nothing else in the detector. The limit is inconsistent with the axion interpretation of the FAISSNER 1981B result.
References:
JIA 2022
PRL 128 081804 Search for a light Higgs boson in single-photon decays of $\Upsilon(1S)$ using $\Upsilon(2S) \to \pi^+ \pi^- \Upsilon(1S)$ tagging method
ABLIKIM 2016E
PR D93 052005 Search for a Light $\mathit CP$-odd Higgs Boson in Radiative Decays of ${{\mathit J / \psi}}$
ABLIKIM 2012
PR D85 092012 Search for a Light Exotic Particle in ${{\mathit J / \psi}}$ Radiative Decays
ANTREASYAN 1990C
PL B251 204 Limits on Axion and Light Higgs Boson Production in ${{\mathit \Upsilon}{(1S)}}$ Decays
DRUZHININ 1987
ZPHY C37 1 Search for Rare Radiative Decays of ${{\mathit \phi}{(1020)}}$ Meson at VEPP-2M
EDWARDS 1982
PRL 48 903 Upper Limit for ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}$