Indirect Limits for Leptoquarks

INSPIRE   PDGID:
S056LQI
VALUE (TeV) CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
1
CRIVELLIN
2021A
RVUE First generation
2
AEBISCHER
2020
RVUE ${{\mathit B}}$ decays
3
DEPPISCH
2020
RVUE ${{\mathit K}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \nu}}{{\mathit \nu}}$
$> 3.1$ 95 4
ABRAMOWICZ
2019
ZEUS First generation
5
MANDAL
2019
RVUE ${{\mathit \tau}}$, ${{\mathit \mu}}$, ${{\mathit e}}$, ${{\mathit K}}$
6
ZHANG
2018A
RVUE ${{\mathit D}}$ decays
7
BARRANCO
2016
RVUE ${{\mathit D}}$ decays
8
KUMAR
2016
RVUE neutral ${{\mathit K}}$ mixing, rare ${{\mathit K}}$ decays
9
BESSAA
2015
RVUE ${{\mathit q}}$ ${{\overline{\mathit q}}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$
$\text{> 14}$ 95 10
SAHOO
2015A
RVUE ${{\mathit B}}$ $_{s,d}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
11
SAKAKI
2013
RVUE ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{(*)}}{{\mathit \tau}}{{\overline{\mathit \nu}}}$ , ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{s}}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$
12
KOSNIK
2012
RVUE ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
$> 2.5$ 95 13
AARON
2011C
H1 First generation
14
DORSNER
2011
RVUE scalar, weak singlet, charge 4/3
15
AKTAS
2007A
H1 Lepton-flavor violation
$> 0.49$ 95 16
SCHAEL
2007A
ALEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
17
SMIRNOV
2007
RVUE ${{\mathit K}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$ , ${{\mathit B}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$
18
CHEKANOV
2005A
ZEUS Lepton-flavor violation
$>1.7$ 96 19
ADLOFF
2003
H1 First generation
$> 46$ 90 20
CHANG
2003
BELL Pati-Salam type
21
CHEKANOV
2002
ZEUS Repl. by CHEKANOV 2005A
$>1.7$ 95 22
CHEUNG
2001B
RVUE First generation
$>0.39$ 95 23
ACCIARRI
2000P
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}$
$>1.5$ 95 24
ADLOFF
2000
H1 First generation
$>0.2$ 95 25
BARATE
2000I
ALEP Repl. by SCHAEL 2007A
26
BARGER
2000
RVUE ${}^{}\mathrm {Cs}$
27
GABRIELLI
2000
RVUE Lepton flavor violation
$>0.74$ 95 28
ZARNECKI
2000
RVUE $\mathit S_{1}$ leptoquark
29
ABBIENDI
1999
OPAL
$>19.3$ 95 30
ABE
1998V
CDF ${{\mathit B}_{{s}}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}$ , Pati-Salam type
31
ACCIARRI
1998J
L3 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
32
ACKERSTAFF
1998V
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ , ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$>0.76$ 95 33
DEANDREA
1997
RVUE ${{\widetilde{\mathit R}}_{{2}}}$ leptoquark
34
DERRICK
1997
ZEUS Lepton-flavor violation
35
GROSSMAN
1997
RVUE ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ (X)
36
JADACH
1997
RVUE ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$>1200$ 37
KUZNETSOV
1995B
RVUE Pati-Salam type
38
MIZUKOSHI
1995
RVUE Third generation scalar leptoquark
$>0.3$ 95 39
BHATTACHARYYA
1994
RVUE Spin-0 leptoquark coupled to ${{\overline{\mathit e}}_{{R}}}{{\mathit t}_{{L}}}$
40
DAVIDSON
1994
RVUE
$>18$ 41
KUZNETSOV
1994
RVUE Pati-Salam type
$>0.43$ 95 42
LEURER
1994
RVUE First generation spin-1 leptoquark
$>0.44$ 95 42
LEURER
1994B
RVUE First generation spin-0 leptoquark
43
MAHANTA
1994
RVUE $\mathit P$ and $\mathit T$ violation
$>1$ 44
SHANKER
1982
RVUE Nonchiral spin-0 leptoquark
$>125$ 44
SHANKER
1982
RVUE Nonchiral spin-1 leptoquark
1  CRIVELLIN 2021A set limits on coupling strengths of scalar and vector leptoquarks using ${{\mathit K}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \nu}}{{\mathit \nu}}$ , ${{\mathit K}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit K}^{0}}−{{\overline{\mathit K}}^{0}}$ and ${{\mathit D}^{0}}−{{\overline{\mathit D}}^{0}}$ mixings, and weak neutral current measurements. See their Fig. 2 and Fig. 3 for the limits in mass-coupling plane.
2  AEBISCHER 2020 explain the ${{\mathit B}}$ decay anomalies using four-fermion operator Wilson coefficents. See their Table 1. These Wilson coefficients may be generated by a ${{\mathit U}_{{1}}}$ vector leptoquark with ${{\mathit U}_{{1}}}$ transforming as (3,1)$_{2/3}$ under the SM gauge group. See their Figures 6, 7, 8 for the regions of the LQ parameter space which explains the ${{\mathit B}}$ anomalies and avoids the indirect low energy constraints.
3  DEPPISCH 2020 limits on the lepton-number-violating higher-dimensional-operators are derived from ${{\mathit K}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \nu}}{{\mathit \nu}}$ in the standard model effective field theory. These higher-dimensional-operators may be induced from leptoquark-exchange diagrams.
4  ABRAMOWICZ 2019 obtain a limit on $\lambda /{{\mathit M}_{{LQ}}}$ $>$ 1.16 TeV${}^{-1}$ for weak isotriplet spin-0 leptoquark ${{\mathit S}_{{1}}^{L}}$. We obtain the limit quoted above by converting the limit on $\lambda /{{\mathit M}_{{LQ}}}$ for ${{\mathit S}_{{1}}^{L}}$ assuming $\lambda $ = $\sqrt {4 \pi }$. See their Table 5 for the limits of leptoquarks with different quantum numbers. These limits are derived from bounds of ${{\mathit e}}{{\mathit q}}$ contact interactions.
5  MANDAL 2019 give bounds on leptoquarks from ${{\mathit \tau}}$-decays, leptonic dipole moments, lepton-flavor-violating processes, and ${{\mathit K}}$ decays.
6  ZHANG 2018A give bounds on leptoquark induced four-fermion interactions from ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}}{{\mathit \ell}}{{\mathit \nu}}$ . The authors inform us that the shape parameter of the vector form factor in both the abstract and the conclusions of ZHANG 2018A should be $\mathit r_{+1}$ = $2.16$ $\pm0.07$ rather than $\pm0.007$. The numbers listed in their Table 7 are correct.
7  BARRANCO 2016 give bounds on leptoquark induced four-fermion interactions from ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit D}_{{s}}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ .
8  KUMAR 2016 gives bound on SU(2) singlet scalar leptoquark with chrge $−$1/3 from ${{\mathit K}^{0}}−{{\overline{\mathit K}}^{0}}$ mixing, ${{\mathit K}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ , ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , and ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \mu}^{\pm}}{{\mathit e}^{\mp}}$ decays.
9  BESSAA 2015 obtain limit on leptoquark induced four-fermion interactions from the ATLAS and CMS limit on the ${{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit e}}}{{\mathit e}}$ contact interactions.
10  SAHOO 2015A obtain limit on leptoquark induced four-fermion interactions from ${{\mathit B}}$ $_{s,d}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ for $\lambda $ $\simeq{}$ $\mathit O$(1).
11  SAKAKI 2013 explain the ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{(*)}}{{\mathit \tau}}{{\overline{\mathit \nu}}}$ anomaly using Wilson coefficients of leptoquark-induced four-fermion operators.
12  KOSNIK 2012 obtains limits on leptoquark induced four-fermion interactions from ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ decays.
13  AARON 2011C limit is for weak isotriplet spin-0 leptoquark at strong coupling ${{\mathit \lambda}}$ = $\sqrt {4\pi }$. For the limits of leptoquarks with different quantum numbers, see their Table 3. Limits are derived from bounds of ${{\mathit e}}{{\mathit q}}$ contact intereractions.
14  DORSNER 2011 give bounds on scalar, weak singlet, charge 4/3 leptoquark from ${{\mathit K}}$, ${{\mathit B}}$, ${{\mathit \tau}}$ decays, meson mixings, $\mathit LFV$, $\mathit g−$2 and ${{\mathit Z}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ .
15  AKTAS 2007A search for lepton-flavor violation in ${{\mathit e}}{{\mathit p}}$ collision. See their Tables $4 - 7$ for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
16  SCHAEL 2007A limit is for the weak-isoscalar spin-0 left-handed leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, see their Table 35.
17  SMIRNOV 2007 obtains mass limits for the vector and scalar chiral leptoquark states from ${{\mathit K}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \mu}}$ , ${{\mathit B}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \tau}}$ decays.
18  CHEKANOV 2005 search for various leptoquarks with lepton-flavor violating couplings. See their Figs.6--10 and Tables 1--8 for detailed limits.
19  ADLOFF 2003 limit is for the weak isotriplet spin-0 leptoquark at strong coupling $\lambda =\sqrt {4{{\mathit \pi}} }$. For the limits of leptoquarks with different quantum numbers, see their Table$~$3. Limits are derived from bounds on ${{\mathit e}^{\pm}}{{\mathit q}}$ contact interactions.
20  The bound is derived from B( ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}$ ) $<$ $1.7 \times 10^{-7}$.
21  CHEKANOV 2002 search for lepton-flavor violation in ${{\mathit e}}{{\mathit p}}$ collisions. See their Tables$~1 - 4$ for limits on lepton-flavor violating and four-fermion interactions induced by various leptoquarks.
22  CHEUNG 2001B quoted limit is for a scalar, weak isoscalar, charge $−$1/3 leptoquark with a coupling of electromagnetic strength. The limit is derived from bounds on contact interactions in a global electroweak analysis. For the limits of leptoquarks with different quantum numbers, see Table$~$5.
23  ACCIARRI 2000P limit is for the weak isoscalar spin-0 leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, see their Table$~$4.
24  ADLOFF 2000 limit is for the weak isotriplet spin-0 leptoquark at strong coupling, $\lambda =\sqrt {4\pi }$. For the limits of leptoquarks with different quantum numbers, see their Table$~$2. ADLOFF 2000 limits are from the $\mathit Q{}^{2}$ spectrum measurement of ${{\mathit e}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit e}^{+}}$ X.
25  BARATE 2000I search for deviations in cross section and jet-charge asymmetry in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\overline{\mathit q}}}{{\mathit q}}$ due to $\mathit t$-channel exchange of a leptoquark at $\sqrt {\mathit s }$=130 to 183 GeV. Limits for other scalar and vector leptoquarks are also given in their Table$~$22.
26  BARGER 2000 explain the deviation of atomic parity violation in cesium atoms from prediction is explained by scalar leptoquark exchange.
27  GABRIELLI 2000 calculate various process with lepton flavor violation in leptoquark models.
28  ZARNECKI 2000 limit is derived from data of HERA, LEP, and Tevatron and from various low-energy data including atomic parity violation. Leptoquark coupling with electromagnetic strength is assumed.
29  ABBIENDI 1999 limits are from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ cross section at $130 - 136$, $161 - 172$, 183 GeV. See their Fig.$~$8 and Fig.$~$9 for limits in mass-coupling plane.
30  ABE 1998V quoted limit is from B( ${{\mathit B}_{{s}}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}$ )$<8.2 \times 10^{-6}$. ABE 1998V also obtain a similar limit on $\mathit M_{LQ}>20.4$ TeV from B( ${{\mathit B}_{{d}}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}$ )$<4.5 \times 10^{-6}$. Both bounds assume the non-canonical association of the ${{\mathit b}}~$quark with electrons or muons under SU(4).
31  ACCIARRI 1998J limit is from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ cross section at $\sqrt {\mathit s }$= $130 - 172$ GeV which can be affected by the ${{\mathit t}}-~$and ${{\mathit u}}$-channel exchanges of leptoquarks. See their Fig.$~$4 and Fig.$~$5 for limits in the mass-coupling plane.
32  ACKERSTAFF 1998V limits are from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ and ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ cross sections at $\sqrt {\mathit s }$ = $130 - 172$ GeV, which can be affected by the $\mathit t$- and $\mathit u$-channel exchanges of leptoquarks. See their Fig.$~$21 and Fig.$~$22 for limits of leptoquarks in mass-coupling plane.
33  DEANDREA 1997 limit is for ${{\widetilde{\mathit R}}_{{2}}}$ leptoquark obtained from atomic parity violation (APV). The coupling of leptoquark is assumed to be electromagnetic strength. See Table$~$2 for limits of the four-fermion interactions induced by various scalar leptoquark exchange. DEANDREA 1997 combines APV limit and limits from Tevatron and HERA. See Fig.$~1 - 4$ for combined limits of leptoquark in mass-coupling plane.
34  DERRICK 1997 search for lepton-flavor violation in ${{\mathit e}}{{\mathit p}}$ collision. See their Tables$~$2--5 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
35  GROSSMAN 1997 estimate the upper bounds on the branching fraction ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ (X) from the absence of the ${{\mathit B}}$ decay with large missing energy. These bounds can be used to constrain leptoquark induced four-fermion interactions.
36  JADACH 1997 limit is from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ cross section at $\sqrt {\mathit s }=172.3$ GeV which can be affected by the ${{\mathit t}}$- and ${{\mathit u}}$-channel exchanges of leptoquarks. See their Fig.$~$1 for limits on vector leptoquarks in mass-coupling plane.
37  KUZNETSOV 1995B use ${{\mathit \pi}}$, ${{\mathit K}}$, ${{\mathit B}}$, ${{\mathit \tau}}$ decays and ${{\mathit \mu}}{{\mathit e}}$ conversion and give a list of bounds on the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. The quoted limit is from ${{\mathit K}_{{L}}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit e}}$ decay assuming zero mixing.
38  MIZUKOSHI 1995 calculate the one-loop radiative correction to the ${{\mathit Z}}$-physics parameters in various scalar leptoquark models. See their Fig.$~$4 for the exclusion plot of third generation leptoquark models in mass-coupling plane.
39  BHATTACHARYYA 1994 limit is from one-loop radiative correction to the leptonic decay width of the ${{\mathit Z}}$. ${\mathit m}_{{{\mathit H}}}$=250 GeV, ${{\mathit \alpha}_{{s}}}({\mathit m}_{{{\mathit Z}}})=0.12$, ${\mathit m}_{{{\mathit t}}}$=180 GeV, and the electroweak strength of leptoquark coupling are assumed. For leptoquark coupled to ${{\overline{\mathit e}}_{{L}}}{{\mathit t}_{{R}}}$ , ${{\overline{\mathit \mu}}}{{\mathit t}}$ , and ${{\overline{\mathit \tau}}}{{\mathit t}}$ , see Fig.$~$2 in BHATTACHARYYA 1994B erratum and Fig.$~$3.
40  DAVIDSON 1994 gives an extensive list of the bounds on leptoquark-induced four-fermion interactions from ${{\mathit \pi}}$, ${{\mathit K}}$, ${{\mathit D}}$, ${{\mathit B}}$, ${{\mathit \mu}}$, ${{\mathit \tau}}$ decays and meson mixings, $\mathit etc$. See Table$~$15 of DAVIDSON 1994 for detail.
41  KUZNETSOV 1994 gives mixing independent bound of the Pati-Salam leptoquark from the cosmological limit on ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\overline{\mathit \nu}}}{{\mathit \nu}}$ .
42  LEURER 1994 , LEURER 1994B limits are obtained from atomic parity violation and apply to any chiral leptoquark which couples to the first generation with electromagnetic strength. For a nonchiral leptoquark, universality in ${{\mathit \pi}}_{{{\mathit \ell}}2}$ decay provides a much more stringent bound.
43  MAHANTA 1994 gives bounds of $\mathit P$- and $\mathit T$-violating scalar-leptoquark couplings from atomic and molecular experiments.
44  From ( ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ )$/$( ${{\mathit \pi}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}$ ) ratio. SHANKER 1982 assumes the leptoquark induced four-fermion coupling 4$\mathit g{}^{2}/\mathit M{}^{2}$ (${{\overline{\mathit \nu}}}_{\mathit eL}$ $\mathit u_{\mathit R}$) ( ${{\overline{\mathit d}}_{{L}}}{{\mathit e}_{{R}}}$ )with $\mathit g=0.004$ for spin-0 leptoquark and $\mathit g{}^{2}/\mathit M{}^{2}$ (${{\overline{\mathit \nu}}}_{\mathit eL}$ ${{\mathit \gamma}_{{\mu}}}{{\mathit u}_{{L}}}$ ) (${{\overline{\mathit d}}_{{R}}}$ ${{\mathit \gamma}}{}^{{{\mathit \mu}}}$ ${{\mathit e}_{{R}}}$ ) with $\mathit g≅0.6$ for spin-1 leptoquark.
References:
CRIVELLIN 2021A
PR D103 115023 Combined constraints on first generation leptoquarks
AEBISCHER 2020
EPJ C80 252 $B$-decay discrepancies after Moriond 2019
DEPPISCH 2020
JHEP 2012 186 Constraining lepton number violating interactions in rare kaon decays
ABRAMOWICZ 2019
PR D99 092006 Limits on contact interactions and leptoquarks at HERA
MANDAL 2019
JHEP 1912 089 Constraints on scalar leptoquarks from lepton and kaon physics
ZHANG 2018A
EPJ C78 695 Determinations of the form factors of semileptonic $D\rightarrow K$ decays and leptoquark constraints
BARRANCO 2016
JP G43 115004 Two Higgs Doublet Model and Leptoquarks Constraints from ${{\mathit D}}$ Meson Decays
KUMAR 2016
PR D94 014022 Constraints on a Scalar Leptoquark from the Kaon Sector
BESSAA 2015
EPJ C75 97 Constraints on $\mathit t$ -Channel Leptoquark Exchange from LHC Contact Interaction Searches
SAHOO 2015A
PR D91 094019 Scalar Leptoquarks and the Rare ${{\mathit B}}$ Meson Decays
SAKAKI 2013
PR D88 094012 Testing Leptoquark Models in ${{\overline{\mathit B}}}$ $\rightarrow$ ${{\mathit D}^{{(*)}}}{{\mathit \tau}}{{\overline{\mathit \nu}}}$
KOSNIK 2012
PR D86 055004 Model Independent Constraints on Leptoquarks from ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ Processes
AARON 2011C
PL B705 52 Search for Contact Interactions in ${{\mathit e}^{\pm}}{{\mathit p}}$ Collisions at HERA
DORSNER 2011
JHEP 1111 002 Limits on Scalar Leptoquark Interactions and Consequences for GUTs
AKTAS 2007A
EPJ C52 833 Search for Lepton Flavour Violation in ${{\mathit e}}{{\mathit p}}$ Collisions at HERA
SCHAEL 2007A
EPJ C49 411 Fermion Pair Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $189 - 209$ GeV and Constraints on Physics Beyond the Standard Model
SMIRNOV 2007
MPL A22 2353 Mass Limits for Scalar and Gauge Leptoquarks from ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit e}^{\mp}}{{\mathit \mu}^{\pm}}$ , ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit e}^{\mp}}{{\mathit \tau}^{\pm}}$ Decays
CHEKANOV 2005A
EPJ C44 463 Search for Lepton-Flavor Violation at HERA
ADLOFF 2003
PL B568 35 Search for New Physics in ${{\mathit e}^{\pm}}{{\mathit q}}$ Contact Interactions at HERA
CHANG 2003
PR D68 111101 Search for ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ at BELLE
CHEKANOV 2002
PR D65 092004 Search for Lepton Flavor Violation in ${{\mathit e}^{+}}{{\mathit p}}$ Collisions at HERA
CHEUNG 2001B
PL B517 167 Constraints on Electron Quark Contact Interactions and Implications to Models of Leptoquarks and Extra ${{\mathit Z}}$ Bosons
ACCIARRI 2000P
PL B489 81 Search for Manifestations of New Physics in Fermion Pair Production at LEP
ADLOFF 2000
PL B479 358 Search for Compositeness, Leptoquarks and Large Extra Dimensions in ${{\mathit e}}{\mathit {\mathit q}}$ Contact Interactions at HERA
BARATE 2000I
EPJ C12 183 Study of Fermion Pair Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $130 - 183$ GeV
BARGER 2000
PL B480 149 Atomic Parity Violation, Leptoquarks, and Contact Interactions
GABRIELLI 2000
PR D62 055009 Model Independent Constraints on Leptoquarks from Rare Muon and ${{\mathit \tau}}$ Lepton Processes
ZARNECKI 2000
EPJ C17 695 Leptoquark Signal from Global Analysis
ABBIENDI 1999
EPJ C6 1 Test of the Standard Model and Constraints on New Physics from Measurements of Fermion Pair Production at 183 GeV at LEP
ABE 1998V
PRL 81 5742 Search for the Decays ${{\mathit B}_{{s}}^{0}}$, ${{\mathit B}_{{d}}^{0}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}$ and Pati-Salam Leptoquarks
ACCIARRI 1998J
PL B433 163 Search for New Physics Phenomena in Fermion Pair Production at LEP
ACKERSTAFF 1998V
EPJ C2 441 Tests of the Standard Model and Constraints on New Physics from Measurements of Fermion Pair Production at $130 - 172$ GeV at LEP
DEANDREA 1997
PL B409 277 Atomic Parity Violation in Cesium and Implications for New Physics
DERRICK 1997
ZPHY C73 613 Search for Lepton Flavor Violation in ${{\mathit e}}{{\mathit p}}$ Collisions at 300 GeV Center of Mass Energy
GROSSMAN 1997
PR D55 2768 ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ (${{\mathit X}}$) Decays: First Constraints and Phenomenological Implications
JADACH 1997
PL B408 281 ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Annihilation into Hadrons at LEP2 in the Presence of the Anomalous DESY Positron-Jet Event Phenomenon
KUZNETSOV 1995B
PAN 58 2113 New Type of Mixing in the Minimal Quark $−$ Lepton Symmetry and a Lower Bound on the Vector Leptoquark Mass
MIZUKOSHI 1995
NP B443 20 Bounds on Scalar Leptoquarks from ${{\mathit Z}^{0}}$ Physics
BHATTACHARYYA 1994
PL B336 100 Bounds on the Masses and Couplings of Leptoquarks from Leptonic Partial Widths of the ${{\mathit Z}^{0}}$
Also
PL B338 522 (erratum) Erratum: BHATTACHARYYA 1994 Bounds on the Masses and Couplings of Leptoquarks from Leptonic Partial Widths of the ${{\mathit Z}}$
DAVIDSON 1994
ZPHY C61 613 Model Independent Constraints on Leptoquarks from Rare Processes
KUZNETSOV 1994
PL B329 295 Vector Leptoquarks Could be Rather Light?
LEURER 1994B
PR D49 333 A Comprehensive Study of Leptoquark Bounds
Also
PRL 71 1324 New Bounds on Leptoquarks
LEURER 1994
PR D50 536 Bounds on Vector Leptoquarks
MAHANTA 1994
PL B337 128 Constraints on Leptoquark Couplings from Simultaneous ${{\mathit p}}$ and $\mathit T$ Violations in Atoms and Molecules
SHANKER 1982
NP B204 375 ${{\mathit \pi}}{{\mathit \ell}}$2, ${{\mathit K}}{{\mathit \ell}}$3 and ${{\mathit K}^{0}}$ $−$ ${{\overline{\mathit K}}^{0}}$ Constraints on Leptoquarks and Supersymmetric Particles