Search for Relic Invisible Axions

INSPIRE   PDGID:
S029AXI
Limits are for the dimensionless quantity [$\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}]{}^{2}\rho _{\mathit A}$ where $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ denotes the axion two-photon coupling, $\mathit L_{{\mathrm {int}}}$ = $−$ ${\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }\over 4}{{\mathit \phi}_{{A}}}{{\mathit F}}_{ {{\mathit \mu}} {{\mathit \nu}} }{{\widetilde{\mathit F}}}{}^{ {{\mathit \mu}} {{\mathit \nu}} }$ = $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }\phi _{\mathit A}\mathbf {E}\cdot{}\mathbf {B}$, and $\rho _{A}$ is the axion energy density near the earth, unless otherwise stated. Notice that for QCD axions $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}$ does not depend on ${\mathit m}_{{{\mathit A}^{0}}}$. For the reference values ${\mathit m}_{{{\mathit A}^{0}}}$ = 1 $\mu $eV, $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ = $3.9 \times 10^{-16}$ GeV${}^{-1}$ (that would apply to KSVZ axions at that mass), and ${{\mathit \rho}_{{A}}}$ = 300 MeV/cm${}^{3}$ one finds [$\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}]{}^{2}\rho _{\mathit A}$ = $3.5 \times 10^{-43}$.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<4.7 \times 10^{-5}$ 95 1
ADE
2022
CMB ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.16 - 4.8 \times 10^{-20}$ eV
$<1.0 \times 10^{-41}$ 90 2
ALESINI
2022
QUAX ${\mathit m}_{{{\mathit A}^{0}}}$ = $42.8210 - 42.8223$ $\mu $eV
$<7 \times 10^{-33}$ 95 3
BATTYE
2022
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $4.2 - 60$ $\mu $eV
$<5.8 \times 10^{-41}$ 95 4
CHANG
2022
TASE ${\mathit m}_{{{\mathit A}^{0}}}$ = $19.4687 - 19.8436$ $\mu $eV
$<3.2 \times 10^{-6}$ 95 5
FERGUSON
2022
CMB ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.047 - 4.7 \times 10^{-20}$ eV
$<8.4 \times 10^{-43}$ 90 6
LEE
2022
CASK ${\mathit m}_{{{\mathit A}^{0}}}$ = $19.764 - 19.890$ $\mu $eV
$<3.6 \times 10^{-43}$ 90 7
YOON
2022
CASK ${\mathit m}_{{{\mathit A}^{0}}}$ = $19.764 - 19.890$ $\mu $eV
$<1.03 \times 10^{-35}$ 95 8
ZHOU
2022
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.18 - 4.35$ $\mu $eV
$<2.8 \times 10^{-4}$ 95 9
ADE
2021
CMB ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.16 - 4.8 \times 10^{-20}$ eV
$<1.1 \times 10^{-41}$ 90 10
ALESINI
2021
QUAX ${\mathit m}_{{{\mathit A}^{0}}}$ = 43 $\mu $eV
$<1 \times 10^{-44}$ 90 11
BARTRAM
2021A
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.3 - 4.2$ $\mu $eV
$<1.6 \times 10^{-29}$ 95 12
DEVLIN
2021
TRAP ${\mathit m}_{{{\mathit A}^{0}}}$ = $2.7906 - 2.7914$ neV
$<1.4 \times 10^{-23}$ 95 13
GRAMOLIN
2021
SHFT ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.012 - 12$ neV
$<7 \times 10^{-43}$ 90 14
KWON
2021
CASK ${\mathit m}_{{{\mathit A}^{0}}}$ = $10.7126 - 10.7186$ $\mu $eV
$<4.6 \times 10^{-40}$ 95 15
MELCON
2021
RADE ${\mathit m}_{{{\mathit A}^{0}}}$ = $34.6738 - 34.6771$ $\mu $eV
$<3.5 \times 10^{-28}$ 95 16
SALEMI
2021
ABRA ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.41 - 8.27$ neV
$<3 \times 10^{-3}$ 95 17
THOMSON
2021
${\mathit m}_{{{\mathit A}^{0}}}$ = $7.44 - 19.38$ neV
$<0.01$ 95 17
THOMSON
2021
${\mathit m}_{{{\mathit A}^{0}}}$ = $74.4 - 74.5$ $\mu $eV
18
YUAN
2021
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $10^{-20} - 10^{-17}$ eV
$<1.9 \times 10^{-44}$ 90 19
BRAINE
2020
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $2.81 - 3.31$ $\mu $eV
$<2 \times 10^{-35}$ 90 20
CRISOSTO
2020
SLIC ${\mathit m}_{{{\mathit A}^{0}}}$ = $180.07 - 180.15$ neV
$<4 \times 10^{-37}$ 95 21
DARLING
2020A
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $4.2 - 165.6$ $\mu $eV
$<3.2 \times 10^{-36}$ 95 22
FOSTER
2020
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ = $5 - 7$, $10 - 11\mu $eV
$<5.7 \times 10^{-41}$ 90 23
JEONG
2020
CASK ${\mathit m}_{{{\mathit A}^{0}}}$ = $13.0 - 13.9$ $\mu $eV
24
KENNEDY
2020
${\mathit m}_{{{\mathit S}^{0}}}$ = $10^{-19} - 10^{-17}$ eV
$<4.8 \times 10^{-42}$ 90 25
LEE
2020A
CASK ${\mathit m}_{{{\mathit A}^{0}}}$ = $6.62 - 6.82$ $\mu $eV
$<2.6 \times 10^{-39}$ 95 26
ALESINI
2019
QUAX ${\mathit m}_{{{\mathit A}^{0}}}$ = 37.5 $\mu $eV
$<6 \times 10^{-5}$ 27
FUJITA
2019
ASTR ${\mathit m}_{{{\mathit A}^{0}}}$ $<$ $10^{-21}$ eV
$<2 \times 10^{-27}$ 95 28
OUELLET
2019A
ABRA ${\mathit m}_{{{\mathit A}^{0}}}$ = $0.31 - 8.3$ neV
$<7.3 \times 10^{-40}$ 90 29
BOUTAN
2018
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $17.38 - 17.57$ $\mu $eV
$<1.8 \times 10^{-39}$ 90 29
BOUTAN
2018
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $21.03 - 23.98$ $\mu $eV
$<3.4 \times 10^{-39}$ 90 29
BOUTAN
2018
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $29.67 - 29.79$ $\mu $eV
$<1.4 \times 10^{-44}$ 90 30
DU
2018
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ =$2.66 - 2.81$ $\mu $eV
$<2.87 \times 10^{-42}$ 90 31
ZHONG
2018
HYST ${\mathit m}_{{{\mathit A}^{0}}}$ =$23.15 - 24$ $\mu $eV
32
BRANCA
2017
AURG ${\mathit m}_{{{\mathit S}^{0}}}$ = $3.5 - 3.9$ peV
$<3 \times 10^{-42}$ 90 33
BRUBAKER
2017
HYST ${\mathit m}_{{{\mathit A}^{0}}}$ = $23.55 - 24.0$ $\mu $eV
$<1.0 \times 10^{-29}$ 95 34
CHOI
2017
CASK ${\mathit m}_{{{\mathit A}^{0}}}$ = $24.7 - 29.1$ $\mu $eV
$<8.6 \times 10^{-42}$ 90 35
HOSKINS
2016
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ =$3.36 - 3.52$ or $3.55 - 3.69$ $\mu $eV
36
BECK
2013
${\mathit m}_{{{\mathit A}^{0}}}$ = 0.11 meV
$<3.5 \times 10^{-43}$ 37
HOSKINS
2011
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.3 - 3.69 \times 10^{-6}$ eV
$<2.9 \times 10^{-43}$ 90 38
ASZTALOS
2010
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.34 - 3.53 \times 10^{-6}$ eV
$<1.9 \times 10^{-43}$ 97.7 39
DUFFY
2006
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.98 - 2.17 \times 10^{-6}$ eV
$<5.5 \times 10^{-43}$ 90 40
ASZTALOS
2004
ADMX ${\mathit m}_{{{\mathit A}^{0}}}$ = $1.9 - 3.3 \times 10^{-6}$ eV
41
KIM
1998
THEO
$<2 \times 10^{-41}$ 42
HAGMANN
1990
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = ($5.4 - 5.9){}10^{-6}$ eV
$<6.3 \times 10^{-42}$ 95 43
WUENSCH
1989
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = ($4.5 - 10.2){}10^{-6}$ eV
$<5.4 \times 10^{-41}$ 95 43
WUENSCH
1989
CNTR ${\mathit m}_{{{\mathit A}^{0}}}$ = ($11.3 - 16.3){}10^{-6}$ eV
1  ADE 2022 is an update of ADE 2021 based on the expanded data of the $2012 - 2015$ observing seasons. See their Fig. 3 for mass-dependent limits over the extended mass range $1 \times 10^{-23} - 6 \times 10^{-19}$ eV.
2  ALESINI 2022 is an update of ALESINI 2021 , using the TM030 mode of the cylindrical dielectric cavity. See their Fig. 8 for mass-dependent limits.
3  BATTYE 2022 is analogous to DARLING 2020A, and use plasma ray tracing technique to analyze the propagation of radio photons converted from axion dark matter in the magnetosphere of PSR J1745-2900. The quoted limit assumes ${{\mathit \rho}_{{A}}}$ = $6.5 \times 10^{4}$ GeV/cm${}^{3}$ in the vicinity of the magnetar. See their Fig. 1 for mass-dependent limits.
4  CHANG 2022 used a microwave cavity detector to search for dark matter axions. See Fig. 3 for the mass-dependent limits.
5  FERGUSON 2022 is analogous to ADE 2021 . They use the data of the SPT-3G's 2019 observing season. See their Fig. 5 for mass-dependent limits over the extended mass range $0.047 - 9.5 \times 10^{-20}$ eV.
6  LEE 2022 is analogous to LEE 2020A. They used an 18T high-temperature superconducting magnet haloscope. See their Fig. 5 for mass-dependent limits.
7  YOON 2022 analyzed the data from LEE 2022 and changed from a frequentist to a Bayesian method to set limits. See their Fig. 27 for mass-dependent limits.
8  ZHOU 2022 is analogous to DARLING 2020A, and they use the data from the MeerKAT radio telescope's observation of the neutron star J0806.4-4123, which is 250 pc from Earth. See their Fig.3 for mass-dependent limits.
9  ADE 2021 looks for a time-variable global rotation of the CMB polarization induced by the harmonic oscillations of local axion-like dark matter and uses data from the 2012 observing season of the Keck Array, part of the BICEP program. The limits get 25$\%$ weaker for ${\mathit m}_{{{\mathit A}^{0}}}$ = $4.8 \times 10^{-20} - 5.7 \times 10^{-19}$ eV. See their Eq. (80) and Fig. 6 for mass-dependent limits.
10  ALESINI 2021 is an update of ALESINI 2019 . See their Figs. 5 and 6 for the mass-dependent limits.
11  BARTRAM 2021A is analogous to DU 2018 . See their Fig.4 for mass-dependent limits.
12  DEVLIN 2021 use the superconducting resonant detection circuit of a cryogenic Penning trap with a single antiproton. See their Fig. 3 for mass-dependent limits.
13  GRAMOLIN 2021 use two detection channels, each consisting of two stacked toroids to look for the axion-induced oscillating magnetic field. The quoted limit applies at ${\mathit m}_{{{\mathit A}^{0}}}$ = 0.02 neV. See their Fig. 4 for mass-dependent limits.
14  KWON 2021 is analogous to LEE 2020A. They also obtain weaker limits in the range of ${\mathit m}_{{{\mathit A}^{0}}}$ = $10.16 - 11.37$ $\mu $eV. See their Fig. 4 for mass-dependent limits.
15  MELCON 2021 use a radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises installed inside the CAST dipole magnet to look for higher axion masses. See their Fig. 9 for mass-dependent limits.
16  SALEMI 2021 is an update of OUELLET 2019A. See their Fig. 4 for mass-dependent limits.
17  THOMSON 2021 use a resonant cavity supporting two spatially overlapping microwave modes, which is sensitive to the axion mass corresponding to the sum or difference of the two resonant frequencies. The original limit was retracted due to a sign error. See their Fig. 2 in the erratum for the corrected limits.
18  YUAN 2021 use polarimetric observations of Sgr A${}^{*}$ taken by the Event Horizon Telescope to search for periodic oscillation of the polarization induced by axion dark matter, assuming a solitonic core near the Galactic center. They obtained limits in the range of $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ = $8 \times 10^{-13} - 3 \times 10^{-11}$ GeV${}^{-1}$.
19  BRAINE 2020 is analogous to DU 2018 . See Fig. 4 for their mass-dependent limits.
20  CRISOSTO 2020 used a resonant LC circuit to look for lighter axion dark matter. They obtained a similar, slightly weaker limit for ${\mathit m}_{{{\mathit A}^{0}}}$ = $174.98 - 175.19$ and $177.34 - 177.38$ neV. See their Fig. 4 for mass-dependent limits.
21  DARLING 2020A use VLA data to look for radio-frequency radiation converted from axion dark matter in the magnetosphere of the Galactic Center magnetar PSR J1745-2900. They extended the results of DARLING 2020 , which used only data with the highest angular resolution, by adding sub-optimal data. They use ${{\mathit \rho}_{{A}}}$ = $6.5 \times 10^{4}$ GeV/cm${}^{3}$ in the vicinity of the magnetar. See their Fig. 2 for mass-dependent limits.
22  FOSTER 2020 look for radio-frequency radiation converted from axion dark matter in the magnetic field around neutron stars. They use the observed data of isolated local neutron stars and in the Galactic center. The quoted limit applies to ${\mathit m}_{{{\mathit A}^{0}}}$ $\simeq{}$ 7 $\mu $eV. See their Fig. 2 for mass-dependent limits.
23  JEONG 2020 is analogous to LEE 2020A, and they use a double-cell cavity to look for axions with mass $>$ 10 $\mu $eV. See their Fig. 5 for mass-dependent limits.
24  KENNEDY 2020 is analogous to BRANCA 2017 , and they compare the frequency ratios of the ${}^{}\mathrm {Si}$ cavity measured by a ${}^{}\mathrm {Sr}$ optical lattice clock and by a ${}^{}\mathrm {H}$ maser. Assuming the local density of moduli dark matter, $\rho _{S}$ = 0.3 GeV/cm${}^{3}$, they obtain a limit $\mathit G_{ {{\mathit S}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $<$ $5.8 \times 10^{-24}$ GeV${}^{-1}$ at ${\mathit m}_{{{\mathit S}^{0}}}$ = $2 \times 10^{-19}$ eV. See their Fig. 2 for mass-dependent limits as well as limits on the modulus coupling to electrons.
25  LEE 2020A used a microwave cavity detector at the IBS/CAPP to search for dark matter axions. See Fig. 3 for the mass-dependent limits.
26  ALESINI 2019 used a superconducting resonant cavity made of ${}^{}\mathrm {NbTi}$ to increase the quality factor. The limit applies to a mass range of 0.2 neV around ${\mathit m}_{{{\mathit A}^{0}}}$ = 37.5 $\mu $eV.
27  FUJITA 2019 look for photon birefringence under the oscillating axion background using the polarimetric imaging observation of a protoplanetary disk, AB Aur. See their Fig. 2 for a more conservative limit taking account of possible systematic effects.
28  OUELLET 2019A look for the axion-induced oscillating magnetic field generated by a toroidal magnetic field. The quoted limit applies at ${\mathit m}_{{{\mathit A}^{0}}}$ = 8 neV. See their Fig. 3 for the mass-dependent limits.
29  BOUTAN 2018 use a small high frequency cavity installed above the main ADMX cavity to look for heavier axion dark matter. See their Fig. 4 for mass-dependent limits.
30  DU 2018 is analogous to DUFFY 2006 . They upgraded a dilution refrigerator to reduce the system noise. The quoted limit is around ${\mathit m}_{{{\mathit A}^{0}}}$ = 2.69 $\mu $eV for the boosted Maxwellian axion line shape. See Fig. 4 for their mass-dependent limits.
31  ZHONG 2018 is analogous to BRUBAKER 2017 . The quoted limit applies at ${\mathit m}_{{{\mathit A}^{0}}}$ = 23.76 $\mu $eV. See Fig. 4 for their mass-dependent limits.
32  BRANCA 2017 look for modulations of the fine-structure constant and the electron mass due to moduli dark matter by using the cryogenic resonant-mass AURIGA detector. The limit on the assumed dilatonic coupling implies $\mathit G_{ {{\mathit S}} {{\mathit \gamma}} {{\mathit \gamma}} }$ $<$ $1.5 \times 10^{-24}$ GeV${}^{-1}$ for the scalar to two-photon coupling. See Fig. 5 for the mass-dependent limits.
33  BRUBAKER 2017 used a microwave cavity detector at the Yale Wright Laboratory to search for dark matter axions. See Fig. 3 for the mass-dependent limits.
34  CHOI 2017 used a microwave cavity detector with toroidal geometry. See Fig. 4 for their mass-dependent limits.
35  HOSKINS 2016 is analogous to DUFFY 2006 . See Fig.$~$12 for mass-dependent limits in terms of the local dark matter density.
36  BECK 2013 argues that dark-matter axions passing through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. A measurement by HOFFMANN 2004 [Physical Review B70 180503 (2004)] is interpreted in terms of subdominant dark matter axions with ${\mathit m}_{{{\mathit A}^{0}}}$ = 0.11 meV.
37  HOSKINS 2011 is analogous to DUFFY 2006 . See Fig.$~$4 for the mass-dependent limit in terms of the local density.
38  ASZTALOS 2010 used the upgraded detector of ASZTALOS 2004 to search for halo axions. See their Fig.$~$5 for the ${\mathit m}_{{{\mathit A}^{0}}}$ dependence of the limit.
39  DUFFY 2006 used the upgraded detector of ASZTALOS 2004 , while assuming a smaller velocity dispersion than the isothermal model as in Eq. (8) of their paper. See Fig. 10 of their paper on the axion mass dependence of the limit.
40  ASZTALOS 2004 looked for a conversion of halo axions to microwave photons in magnetic field. At 90$\%$ CL, the KSVZ axion cannot have a local halo density more than 0.45~GeV/cm${}^{3}$ in the quoted mass range. See Fig.~7 of their paper on the axion mass dependence of the limit.
41  KIM 1998 calculated the axion-to-photon couplings for various axion models and compared them to the HAGMANN 1990 bounds. This analysis demonstrates a strong model dependence of $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ and hence the bound from relic axion search.
42  HAGMANN 1990 experiment is based on the proposal of SIKIVIE 1983 .
43  WUENSCH 1989 looks for condensed axions near the earth that could be converted to photons in the presence of an intense electromagnetic field via the Primakoff effect, following the proposal of SIKIVIE 1983 . The theoretical prediction with [$\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}]{}^{2}$ = $2 \times 10^{-14}$ MeV${}^{-4}$ (the three generation DFSZ model) and $\rho _{\mathit A}$ = 300 MeV/cm${}^{3}$ that makes up galactic halos gives ($\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }/{\mathit m}_{{{\mathit A}^{0}}}){}^{2}$ $\rho _{\mathit A}$ = $4 \times 10^{-44}$. Note that our definition of $\mathit G_{ {{\mathit A}} {{\mathit \gamma}} {{\mathit \gamma}} }$ is (1/4$\pi $) smaller than that of WUENSCH 1989 .
References:
ADE 2022
PR D105 022006 BICEP/Keck XIV: Improved constraints on axionlike polarization oscillations in the cosmic microwave background
ALESINI 2022
PR D106 052007 Search for Galactic axions with a high-Q dielectric cavity
BATTYE 2022
PR D105 L021305 Towards robust constraints on axion dark matter using PSR J1745-2900
CHANG 2022
PRL 129 111802 First Results from the Taiwan Axion Search Experiment with a Haloscope at 19.6???eV
FERGUSON 2022
PR D106 042011 Searching for axionlike time-dependent cosmic birefringence with data from SPT-3G
LEE 2022
PRL 128 241805 Searching for Invisible Axion Dark Matter with an 18 T Magnet Haloscope
YOON 2022
PR D106 092007 Axion haloscope using an 18 T high temperature superconducting magnet
ZHOU 2022
PR D106 083006 Searching for axion dark matter with the MeerKAT radio telescope
ADE 2021
PR D103 042002 BICEP/Keck XII: Constraints on axionlike polarization oscillations in the cosmic microwave background
ALESINI 2021
PR D103 102004 Search for invisible axion dark matter of mass m$_a=43~\mu$eV with the QUAX--$a\gamma$ experiment
BARTRAM 2021A
PRL 127 261803 Search for Invisible Axion Dark Matter in the 3.3?4.2???eV Mass Range
DEVLIN 2021
PRL 126 041301 Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap
GRAMOLIN 2021
NATP 17 79 Search for axion-like dark matter with ferromagnets
KWON 2021
PRL 126 191802 First Results from an Axion Haloscope at CAPP around 10.7 $\mu$eV
MELCON 2021
JHEP 2110 075
SALEMI 2021
PRL 127 081801 Search for Low-Mass Axion Dark Matter with ABRACADABRA-10 cm
THOMSON 2021
PRL 126 081803 Upconversion Loop Oscillator Axion Detection Experiment: A Precision Frequency Interferometric Axion Dark Matter Search with a Cylindrical Microwave Cavity
Also
PRL 127 019901 (errat.) Upconversion Loop Oscillator Axion Detection Experiment: A Precision Frequency Interferometric Axion Dark Matter Search with a Cylindrical Microwave Cavity
YUAN 2021
JCAP 2103 018 Testing the ALP-photon coupling with polarization measurements of Sagittarius A$^*$
BRAINE 2020
PRL 124 101303 Extended Search for the Invisible Axion with the Axion Dark Matter Experiment
CRISOSTO 2020
PRL 124 241101 ADMX SLIC: Results from a Superconducting LC Circuit Investigating Cold Axions
DARLING 2020A
APJ 900 L28 New Limits on Axionic Dark Matter from the Magnetar PSR J1745-2900
FOSTER 2020
PRL 125 171301 Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres
JEONG 2020
PRL 125 221302 Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope
KENNEDY 2020
PRL 125 201302 Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons
LEE 2020A
PRL 124 101802 Axion Dark Matter Search around 6.7 $\mu$eV
ALESINI 2019
PR D99 101101 Galactic axions search with a superconducting resonant cavity
FUJITA 2019
PRL 122 191101 Hunting Axion Dark Matter with Protoplanetary Disk Polarimetry
OUELLET 2019A
PRL 122 121802 First Results from ABRACADABRA-10 cm: A Search for Sub-$\\mu$eV Axion Dark Matter
BOUTAN 2018
PRL 121 261302 Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter
DU 2018
PRL 120 151301 A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment
ZHONG 2018
PR D97 092001 Results from phase 1 of the HAYSTAC microwave cavity axion experiment
BRANCA 2017
PRL 118 021302 Search for Light Scalar Dark Matter Candidate with AURIGA Detector
BRUBAKER 2017
PRL 118 061302 First Results from a Microwave Cavity Axion Search at 24 Micro-eV
CHOI 2017
PR D96 061102 First Axion Dark Matter Search with Toroidal Geometry
HOSKINS 2016
PR D94 082001 Modulation Sensitive Search for Nonvirialized Dark-Matter Axions
BECK 2013
PRL 111 231801 Possible Resonance Effect of Axionic Dark Matter in Josephson Junctions
HOSKINS 2011
PR D84 121302 Search for Nonvirialized Axionic Dark Matter
ASZTALOS 2010
PRL 104 041301 A SQUID-Based Microwave Cavity Search for Dark-Matter Axions
DUFFY 2006
PR D74 012006 High Resolution Search for Dark-Matter Axions
ASZTALOS 2004
PR D69 011101 An Improved RF Cavity Search for Halo Axions
KIM 1998
PR D58 055006 Constraints on Very Light Axions from Cavity Experiments
HAGMANN 1990
PR D42 1297 Results from a Search for Cosmic Axions
WUENSCH 1989
PR D40 3153 Results of a Laboratory Search for Cosmic Axions and Other Weakly-Coupled Light Particles
Also
PRL 59 839 Limits on the Abundance and Coupling of Cosmic Axions at 4.5 ${}\leq{}$ M$_{a}{}\leq{}$ 5.0 MicroeV