${{\mathit H}^{\pm}}$ (charged Higgs) mass limits for m$_{{{\mathit H}^{+}}}<$ m(top)

INSPIRE   PDGID:
S064HGC
Unless otherwise stated, LEP limits assume B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ )+B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ )=1, and hold for all values of B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$ ), and assume ${{\mathit H}^{+}}$ weak isospin of $\mathit T_{3}$=+1/2. In the following, tan $\beta $ is the ratio of the two vacuum expectation values in two-doublet models (2HDM).

The limits are also applicable to point-like technipions. For a discussion of techniparticles, see the Review of Dynamical Electroweak Symmetry Breaking in this Review.

Limits obtained at the LHC are given in the m${}^{mod-}_{h}$ benchmark scenario, see CARENA 2013 , and hold for all tan $\beta $ values.

For limits obtained in hadronic collisions before the observation of the top quark, and based on the top mass values inconsistent with the current measurements, see the 1996 (Physical Review D54 1 (1996)) Edition of this Review.

Searches in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at and above the ${{\mathit Z}}~$pole have conclusively ruled out the existence of a charged Higgs in the region ${\mathit m}_{{{\mathit H}^{+}}}{ {}\lesssim{} }45$ GeV, and are meanwhile superseded by the searches in higher energy ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at LEP. Results that are by now obsolete are therefore not included in this compilation, and can be found in a previous Edition (The European Physical Journal C15 1 (2000)) of this Review.

In the following, and unless otherwise stated, results from the LEP experiments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from the study of the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}}$ process. Limits from ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ decays are usually stronger in generic 2HDM models than in Supersymmetric models.

VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{\text{none 80 - 140}}$ 95 1
AAD
2015AF
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
$\bf{\text{none 90 - 155}}$ 95 2
KHACHATRYAN
2015AX
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
$\bf{> 80}$ 95 3
LEP
2013
LEP ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}}$ ,$\mathit E_{{\mathrm {cm}}}{}\leq{}$209GeV
$> 76.3$ 95 4
ABBIENDI
2012
OPAL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}}$ ,$\mathit E_{{\mathrm {cm}}}{}\leq{}$209GeV
$>74.4$ 95
ABDALLAH
2004I
DLPH $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV
$>76.5$ 95
ACHARD
2003E
L3 $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV
$>79.3$ 95
HEISTER
2002P
ALEP $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV
• • We do not use the following data for averages, fits, limits, etc. • •
5
TUMASYAN
2022B
CMS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit \gamma}}$
6
AAD
2021V
ATLS ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
7
SIRUNYAN
2021W
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$
8
AAD
2020W
ATLS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
9
SIRUNYAN
2020AO
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
10
SIRUNYAN
2020AV
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
11
SIRUNYAN
2020BE
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$
12
SIRUNYAN
2019AH
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
13
SIRUNYAN
2019BP
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$
14
SIRUNYAN
2019CC
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
15
SIRUNYAN
2019CQ
CMS ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$
16
AABOUD
2018BW
ATLS ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ or ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
17
AABOUD
2018CD
ATLS ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
18
AABOUD
2018CH
ATLS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
19
HALLER
2018
RVUE ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$
20
SIRUNYAN
2018DO
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$
21
MISIAK
2017
RVUE ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}$( ${{\mathit d}}$) ${{\mathit \gamma}}$
22
SIRUNYAN
2017AE
CMS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
23
AABOUD
2016A
ATLS ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$
24
AAD
2016AJ
ATLS ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{+}}$, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
25
AAD
2016AJ
ATLS ${{\mathit q}}$ ${{\mathit q}}$ $\rightarrow$ ${{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
26
AAD
2015AF
ATLS ${{\mathit t}}{{\mathit H}^{\pm}}$
27
AAD
2015M
ATLS ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$
28
KHACHATRYAN
2015AX
CMS ${{\mathit t}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
29
KHACHATRYAN
2015AX
CMS ${{\mathit t}}{{\mathit H}^{\pm}}$ , ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}^{\pm}}{{\mathit \nu}}$
30
KHACHATRYAN
2015BF
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$
31
AAD
2014M
ATLS ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$ , ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
32
AALTONEN
2014A
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit \tau}}{{\mathit \nu}}$
33
AAD
2013AC
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
34
AAD
2013V
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , lepton non-universality
35
AAD
2012BH
ATLS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
36
CHATRCHYAN
2012AA
CMS ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
37
AALTONEN
2011P
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$
$> 316$ 95 38
DESCHAMPS
2010
RVUE Type II, flavor physics data
39
AALTONEN
2009AJ
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
40
ABAZOV
2009AC
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
41
ABAZOV
2009AG
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
42
ABAZOV
2009AI
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
43
ABAZOV
2009P
D0 ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$
44
ABULENCIA
2006E
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
$>92.0$ 95
ABBIENDI
2004
OPAL B( ${{\mathit \tau}}{{\mathit \nu}}$ ) = 1
$>76.7$ 95 45
ABDALLAH
2004I
DLPH Type I
46
ABBIENDI
2003
OPAL ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\overline{\mathit \nu}}}{{\mathit \nu}}$ , ${{\mathit e}}{{\overline{\mathit \nu}}}{{\mathit \nu}}$
47
ABAZOV
2002B
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
48
BORZUMATI
2002
RVUE
49
ABBIENDI
2001Q
OPAL ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ X
50
BARATE
2001E
ALEP ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$
$>315$ 99 51
GAMBINO
2001
RVUE ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$
52
AFFOLDER
2000I
CDF ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
$>59.5$ 95
ABBIENDI
1999E
OPAL $\mathit E_{{\mathrm {cm}}}{}\leq{}183$ GeV
53
ABBOTT
1999E
D0 ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$
54
ACKERSTAFF
1999D
OPAL ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \nu}}$ , ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$
55
ACCIARRI
1997F
L3 ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$
56
AMMAR
1997B
CLEO ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$
57
COARASA
1997
RVUE ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ X
58
GUCHAIT
1997
RVUE ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$
59
MANGANO
1997
RVUE ${{\mathit B}}$ $_{{{\mathit u}}({{\mathit c}})}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$
60
STAHL
1997
RVUE ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$
$>244$ 95 61
ALAM
1995
CLE2 ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$
62
BUSKULIC
1995
ALEP ${{\mathit b}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}{{\mathit X}}$
1  AAD 2015AF search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ ) between $2.3 \times 10^{-3}$ and $0.013$ (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. The region ${\mathit m}_{{{\mathit H}^{+}}}$ $<$ 140 GeV is excluded for tan $\beta $ $>$ 1 in the considered scenarios.
2  KHACHATRYAN 2015AX search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ ) between $0.012$ and $1.5 \times 10^{-3}$ (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM. The region ${\mathit m}_{{{\mathit H}^{+}}}$ $<$ 155 GeV is excluded for tan $\beta $ $>$ 1 in the considered scenarios.
3  LEP 2013 give a limit that refers to the Type II scenario. The limit for B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ ) = 1 is 94 GeV (95$\%$ CL), and for B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\mathit s}}$ ) = 1 the region below 80.5 as well as the region $83 - 88$ GeV is excluded (95$\%$ CL). LEP 2013 also search for the decay mode ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit W}^{*}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , which is not negligible in Type I models. The limit in Type I models is 72.5 GeV (95$\%$ CL) if ${\mathit m}_{{{\mathit A}^{0}}}$ $>$ 12 GeV.
4  ABBIENDI 2012 also search for the decay mode ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit W}^{*}}$ with ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ .
5  TUMASYAN 2022B search for production of scalar resonance decaying to ${{\mathit W}^{\pm}}$ ${{\mathit \gamma}}$ $\rightarrow$ ${{\mathit q}}{{\mathit q}}{{\mathit \gamma}}$ in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on cross section times branching ratio for the mass range $0.7 - 6.0$ TeV, assuming narrow width or $\Gamma /{{\mathit M}}$ = 0.05.
6  AAD 2021V search for ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ associated production followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ in 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 2$ TeV. See also their Fig. 7 for the excluded region in the parameter space of the hMSSM and the following MSSM benchmark scenarios: ${{\mathit M}_{{h}}^{125}}$, ${{\mathit M}_{{h}}^{125}}({{\widetilde{\mathit \chi}}}$), ${{\mathit M}_{{h}}^{125}}({{\widetilde{\mathit \tau}}}$), ${{\mathit M}_{{h}}^{125}}$(alignment), ${{\mathit M}}{}^{125}_{h_{1}}$(CPV).
7  SIRUNYAN 2021W search for vector boson fusion production of ${{\mathit H}^{+}}$ decaying to ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 137 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 3.0$ TeV, and also for limits on the fraction of the triplet vev contribution to the ${{\mathit W}}$ mass in the Georgi-Machacek model.
8  AAD 2020W search for dijet resonances in events with isolated leptons using 139 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. As a byproduct, ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ produced in association with ${{\overline{\mathit t}}}{{\mathit b}}$ is searched for. Limits on the product of cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.6 - 2$ TeV are given in their Fig. 5(c).
9  SIRUNYAN 2020AO search for ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ produced in association with ${{\mathit t}}({{\mathit b}}$) in all jet final states in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 6 for limits on the product of cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 3$ TeV. Limits for ${{\mathit s}}$-channel production are also given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.8 - 3$ TeV. See also Fig. 7 for the corresponding limits in scenarios in the minimal supersymmetric standard model. Cross section limits from combined results with SIRUNYAN 2020AV are given in Fig. 8.
10  SIRUNYAN 2020AV search for ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ produced in association with ${{\mathit t}}({{\mathit b}}$) in final states with one or two leptons, in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on the product of cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 3$ TeV, and their Fig. 6 for the corresponding limits in scenarios in the minimal supersymmetric standard model.
11  SIRUNYAN 2020BE search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ followed by the decay ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ in pair produced top quark events using 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Limits on the branching ratio in the range $1.68 - 0.25\%$ (95$\%$CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV, see their Fig. 4.
12  SIRUNYAN 2019AH search for ${{\mathit H}^{+}}$ in the decay of a pair-produced ${{\mathit t}}$ quark, or in associated ${{\mathit t}}{{\mathit b}}{{\mathit H}^{+}}$ or nonresonant ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit H}^{+}}{{\mathit W}^{-}}$ production, followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ , in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Upper limits on cross section times branching ratio between 6 pb and 5 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 3000$ GeV (including the non-resonant production near the top quark mass), see their Fig. 6 (left). See their Fig. 6 (right) for the excluded regions in the $\mathit m{}^{{\mathrm {mod-}}}_{h}$ scenario of the MSSM.
13  SIRUNYAN 2019BP search for vector boson fusion production of ${{\mathit H}^{+}}$ decaying to ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.3 - 2.0$ TeV, and also for limits on the fraction of the triplet vev contribution to the ${{\mathit W}}$ mass in the Georgi-Machacek model.
14  SIRUNYAN 2019CC search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ from pair produced top quarks, with the decay chain ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2 for limits on the product of branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $15 - 75$ GeV.
15  SIRUNYAN 2019CQ search for vector boson fusion production of ${{\mathit H}^{+}}$ decaying to ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$ or ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 5 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.6 - 2.0$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
16  AABOUD 2018BW search for ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ associated production or the decay ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ , in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8(a) for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 2000$ GeV, and Fig. 8(b) for limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.
17  AABOUD 2018CD search for ${{\overline{\mathit t}}}{{\mathit b}}{{\mathit H}^{+}}$ associated production followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for upper limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{+}}}$ = $0.2 - 2$ TeV. See also their Fig. 9 for the excluded region in the parameter space of the ${{\mathit m}}{}^{{\mathrm {mod-}}}_{h}$ and hMSSM scenarios of the MSSM. The theory predictions overlaid to the experimental limits to determine the excluded ${\mathit m}_{{{\mathit H}^{+}}}$ range are shown without their respective uncertainty band.
18  AABOUD 2018CH search for vector boson fusion production of ${{\mathit H}^{\pm}}$ decaying to ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $0.2 - 0.9$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
19  HALLER 2018 give 95$\%$ CL lower limits on ${\mathit m}_{{{\mathit H}^{+}}}$ of 590 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ ).
20  SIRUNYAN 2018DO search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 3 for upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 150$ GeV assuming that B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit b}}}$ ) = 1 and B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) + B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit W}^{+}}$ ) = 1.
21  MISIAK 2017 give 95$\%$ CL lower limits on ${\mathit m}_{{{\mathit H}^{+}}}$ between 570 and 800 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}$( ${{\mathit d}}$) ${{\mathit \gamma}}$ ).
22  SIRUNYAN 2017AE search for vector boson fusion production of ${{\mathit H}^{\pm}}$ decaying to ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{\pm}}{{\mathit \nu}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 15.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 3 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $0.2 - 2.0$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
23  AABOUD 2016A search for ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. Upper limits on ${\mathit \sigma (}{{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}{)}$ B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ ) between 1.9 pb and 15 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $200 - 2000$ GeV, see their Fig. 6. See their Fig. 7 for the excluded regions in the hMSSM scenario.
24  AAD 2016AJ search for ${{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for upper limits on ${\mathit \sigma (}{{\mathit t}}({{\mathit b}}$) ${{\mathit H}^{\pm}}{)}$ B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ ) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $200 - 600$ GeV.
25  AAD 2016AJ search for ${{\mathit H}^{\pm}}$ production from quark-antiquark annihilation, followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ , in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 10 for upper limits on ${\mathit \sigma (}{{\mathit H}^{\pm}}{)}$ B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ ) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $400 - 3000$ GeV.
26  AAD 2015AF search for ${{\mathit t}}{{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}^{\pm}}{{\mathit \nu}}$ in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on ${\mathit \sigma (}$ ${{\mathit t}}{{\mathit H}^{\pm}}{)}$ B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ ) between 760 and 4.5 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 1000$ GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM.
27  AAD 2015M search for vector boson fusion production of ${{\mathit H}^{\pm}}$ decaying to ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 2 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $200 - 1000$ GeV, and Fig. 3 for limits on thetriplet vacuum expectation value fraction in the Georgi-Machacek model.
28  KHACHATRYAN 2015AX search for ${{\mathit t}}{{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on ${\mathit \sigma (}$ ${{\mathit t}}{{\mathit H}^{\pm}}{)}$ B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ ) between 2.0 and 0.13 pb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 600$ GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
29  KHACHATRYAN 2015AX search for ${{\mathit t}}{{\mathit H}^{\pm}}$ associated production followed by ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}^{\pm}}{{\mathit \nu}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on ${\mathit \sigma (}$ ${{\mathit t}}{{\mathit H}^{\pm}}{)}$ B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ ) between 380 and 25 fb (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 600$ GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
30  KHACHATRYAN 2015BF search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ ) between $0.012$ and $0.065$ (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV.
31  AAD 2014M search for the decay cascade ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$ , ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Table III for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$= $325 - 1025$ GeV and ${\mathit m}_{{{\mathit H}^{+}}}$= $225 - 925$ GeV.
32  AALTONEN 2014A measure B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit \tau}}{{\mathit \nu}}$ ) = $0.096$ $\pm0.028$ using 9 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. For ${\mathit m}_{{{\mathit H}^{+}}}$= $80 - 140$ GeV, this measured value is translated to a limit B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) $<$ 0.059 at 95$\%$ CL assuming B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) = 1.
33  AAD 2013AC search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ (flavor unidentified) in 4.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.05 and 0.01 (95$\%$CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}=90 - 150$ GeV and B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ )=1.
34  AAD 2013V search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ through violation of lepton universality with 4.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.032 and 0.044 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 140$ GeV and B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) = 1. By combining with AAD 2012BH, the limits improve to 0.008 to 0.034 for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV. See their Fig. 7 for the excluded region in the $\mathit m{}^{{\mathrm {max}}}_{h}$ scenario of the MSSM.
35  AAD 2012BH search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ with 4.6 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.01 and 0.05 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $90 - 160$ GeV and B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) = 1. See their Fig.$~$8 for the excluded region in the $\mathit m{}^{{\mathrm {max}}}_{h}$ scenario of the MSSM.
36  CHATRCHYAN 2012AA search for ${{\mathit t}}{{\overline{\mathit t}}}$ production followed by ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ with 2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.019 and 0.041 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV and B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ )=1.
37  AALTONEN 2011P search in 2.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV for the decay chain ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with ${\mathit m}_{{{\mathit A}^{0}}}$ between 4 and 9 GeV. See their Fig.$~$4 for limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) for 90 $<$ ${\mathit m}_{{{\mathit H}^{+}}}<$ 160 GeV.
38  DESCHAMPS 2010 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ , ${{\mathit B}}$, ${{\mathit B}_{{s}}}$ mixings, and ${{\mathit Z}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ . The limit holds irrespective of tan ${{\mathit \beta}}$.
39  AALTONEN 2009AJ search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ in ${{\mathit t}}{{\overline{\mathit t}}}$ events in 2.2 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.08 and 0.32 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $60 - 150$ GeV and B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ ) = 1.
40  ABAZOV 2009AC search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in ${{\mathit t}}{{\overline{\mathit t}}}$ events in 0.9 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.19 and 0.25 (95$\%$ CL) are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV and B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) = 1. See their Fig.$~$4 for an excluded region in a MSSM scenario.
41  ABAZOV 2009AG measure ${{\mathit t}}{{\overline{\mathit t}}}$ cross sections in final states with ${{\mathit \ell}}$ + jets (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$), ${{\mathit \ell}}{{\mathit \ell}}$ , and ${{\mathit \tau}}{{\mathit \ell}}$ in 1 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV, which constrains possible ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ branching fractions. Upper limits (95$\%$ CL) on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.15 and 0.40 (0.48 and 0.57) are given for B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) = 1 (B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ ) = 1) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV.
42  ABAZOV 2009AI search for ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ in ${{\mathit t}}{{\overline{\mathit t}}}$ events in 1 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Final states with ${{\mathit \ell}}$ + jets (${{\mathit \ell}}$ = ${{\mathit e}}$, ${{\mathit \mu}}$), ${{\mathit \ell}}{{\mathit \ell}}$ , and ${{\mathit \tau}}{{\mathit \ell}}$ are examined. Upper limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) (95$\%$ CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) = 1 (B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ ) = 1) for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV. For B( ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ ) = 1 also a simultaneous extraction of B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) and the ${{\mathit t}}{{\overline{\mathit t}}}$ cross section is performed, yielding a limit on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) between 0.12 and 0.26 for ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 155$ GeV. See their Figs.$~5 - 8$ for excluded regions in several MSSM scenarios.
43  ABAZOV 2009P search for ${{\mathit H}^{+}}$ production by ${{\mathit q}}{{\overline{\mathit q}}^{\,'}}$ annihilation followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit b}}}$ decay in 0.9 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Cross section limits in several two-doublet models are given for ${\mathit m}_{{{\mathit H}^{+}}}$ = $180 - 300$ GeV. A region with 20 ${ {}\lesssim{} }$ tan $\beta $ ${ {}\lesssim{} }$ 70 is excluded (95$\%$ CL) for 180 GeV ${ {}\lesssim{} }{\mathit m}_{{{\mathit H}^{+}}}{ {}\lesssim{} }$ 184 GeV in type-I models.
44  ABULENCIA 2006E search for associated ${{\mathit H}^{0}}{{\mathit W}}$ production in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. A fit is made for ${{\mathit t}}{{\overline{\mathit t}}}$ production processes in dilepton, lepton $+$ jets, and lepton $+$ ${{\mathit \tau}}$ final states, with the decays ${{\mathit t}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit b}}$ and ${{\mathit t}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit b}}$ followed by ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ , ${{\mathit c}}{{\overline{\mathit s}}}$ , ${{\mathit t}^{*}}{{\overline{\mathit b}}}$ , or ${{\mathit W}^{+}}{{\mathit H}^{0}}$ . Within the MSSM the search is sensitive to the region tan $\beta <$ 1 or $>$ 30 in the mass range ${\mathit m}_{{{\mathit H}^{+}}}$ = $80 - 160$ GeV. See Fig. 2 for the excluded region in a certain MSSM scenario.
45  ABDALLAH 2004I search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{+}}{{\mathit H}^{-}}$ with ${{\mathit H}^{\pm}}$ decaying to ${{\mathit \tau}}{{\mathit \nu}}$ , ${{\mathit c}}{{\mathit s}}$ , or ${{\mathit W}^{*}}{{\mathit A}^{0}}$ in Type-I two-Higgs-doublet models.
46  ABBIENDI 2003 give a limit ${\mathit m}_{{{\mathit H}^{+}}}>1.28$tan $\beta $ GeV (95$\%$CL) in Type$~$II two-doublet models.
47  ABAZOV 2002B search for a charged Higgs boson in top decays with ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. For ${\mathit m}_{{{\mathit H}^{+}}}$=75 GeV, the region tan $\beta >32.0$ is excluded at 95$\%$CL. The excluded mass region extends to over 140 GeV for tan $\beta $ values above 100.
48  BORZUMATI 2002 point out that the decay modes such as ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit W}}$ , ${{\mathit A}^{0}}{{\mathit W}}$ , and supersymmetric ones can have substantial branching fractions in the mass range explored at LEP$~$II and Tevatron.
49  ABBIENDI 2001Q give a limit tan $\beta /{\mathit m}_{{{\mathit H}^{+}}}<0.53$ GeV${}^{-1}$ (95$\%$CL) in Type$~$II two-doublet models.
50  BARATE 2001E give a limit tan $\beta /{\mathit m}_{{{\mathit H}^{+}}}<0.40$ GeV${}^{-1}$ (90$\%$ CL) in Type$~$II two-doublet models. An independent measurement of ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ X gives tan $\beta /{\mathit m}_{{{\mathit H}^{+}}}<0.49$ GeV${}^{-1}$ (90$\%$ CL).
51  GAMBINO 2001 use the world average data in the summer of 2001 B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ ) = ($3.23$ $\pm0.42$) $ \times 10^{-4}$. The limit applies for Type-II two-doublet models.
52  AFFOLDER 2000I search for a charged Higgs boson in top decays with ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The excluded mass region extends to over 120$~$GeV for tan $\beta $ values above 100 and B( ${{\mathit \tau}}{{\mathit \nu}}$ ) = 1. If B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ )${ {}\gtrsim{} }0.6$, ${\mathit m}_{{{\mathit H}^{+}}}$ up to 160 GeV is excluded. Updates ABE 1997L.
53  ABBOTT 1999E search for a charged Higgs boson in top decays in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV, by comparing the observed ${{\mathit t}}{{\overline{\mathit t}}}$ cross section (extracted from the data assuming the dominant decay ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit W}^{+}}$ ) with theoretical expectation. The search is sensitive to regions of the domains tan $\beta { {}\lesssim{} }1$, $50<{\mathit m}_{{{\mathit H}^{+}}}$(GeV) ${ {}\lesssim{} }120$ and tan $\beta { {}\gtrsim{} }40$, $50<{\mathit m}_{{{\mathit H}^{+}}}$ (GeV) ${ {}\lesssim{} }160$. See Fig.$~$3 for the details of the excluded region.
54  ACKERSTAFF 1999D measure the Michel parameters $\rho $, $\xi $, $\eta $, and $\xi \delta $ in leptonic ${{\mathit \tau}}~$decays from ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \tau}}$ . Assuming ${{\mathit e}}-{{\mathit \mu}}$ universality, the limit ${\mathit m}_{{{\mathit H}^{+}}}>0.97$ tan $\beta $ GeV (95$\%$CL) is obtained for two-doublet models in which only one doublet couples to leptons.
55  ACCIARRI 1997F give a limit ${\mathit m}_{{{\mathit H}^{+}}}>2.6$ tan $\beta $ GeV (90$\%$ CL) from their limit on the exclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ branching ratio.
56  AMMAR 1997B measure the Michel parameter$~\rho $ from ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}{{\mathit \nu}}$ decays and assumes ${{\mathit e}}/{{\mathit \mu}}$ universality to extract the Michel $\eta ~$parameter from ${{\mathit \tau}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}{{\mathit \nu}}$ decays. The measurement is translated to a lower limit on ${\mathit m}_{{{\mathit H}^{+}}}$ in a two-doublet model ${\mathit m}_{{{\mathit H}^{+}}}>0.97$ tan $\beta $ GeV (90$\%~$CL).
57  COARASA 1997 reanalyzed the constraint on the (${\mathit m}_{{{\mathit H}^{\pm}}}$,tan $\beta $) plane derived from the inclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ X branching ratio in GROSSMAN 1995B and BUSKULIC 1995 . They show that the constraint is quite sensitive to supersymmetric one-loop effects.
58  GUCHAIT 1997 studies the constraints on ${\mathit m}_{{{\mathit H}^{+}}}$ set by Tevatron data on ${{\mathit \ell}}{{\mathit \tau}}$ final states in ${{\mathit t}}$ ${{\overline{\mathit t}}}$ $\rightarrow$ ( ${{\mathit W}}{{\mathit b}}$) ( ${{\mathit H}}{{\mathit b}}$), ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$ , ${{\mathit H}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ . See Fig.$~$2 for the excluded region.
59  MANGANO 1997 reconsiders the limit in ACCIARRI 1997F including the effect of the potentially large ${{\mathit B}_{{c}}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ background to ${{\mathit B}_{{u}}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}$ decays. Stronger limits are obtained.
60  STAHL 1997 fit ${{\mathit \tau}}$ lifetime, leptonic branching ratios, and the Michel parameters and derive limit ${\mathit m}_{{{\mathit H}^{+}}}>1.5$ tan $\beta $ GeV (90$\%~$CL) for a two-doublet model. See also STAHL 1994 .
61  ALAM 1995 measure the inclusive ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ branching ratio at ${{\mathit \Upsilon}{(4S)}}$ and give B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \gamma}}$ )$<4.2 \times 10^{-4}$ (95$\%~$CL), which translates to the limit ${\mathit m}_{{{\mathit H}^{+}}}>[244+63$/(tan $\beta ){}^{1.3}$] GeV in the Type$~$II two-doublet model. Light supersymmetric particles can invalidate this bound.
62  BUSKULIC 1995 give a limit ${\mathit m}_{{{\mathit H}^{+}}}>1.9$ tan $\beta $ GeV (90$\%$ CL) for Type-II models from ${{\mathit b}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}_{{\tau}}}{{\mathit X}}$ branching ratio, as proposed in GROSSMAN 1994 .
References:
TUMASYAN 2022B
PL B826 136888 Search for W$\gamma$ resonances in proton-proton collisions at $\sqrt{s} =$ 13 TeV using hadronic decays of Lorentz-boosted W bosons
AAD 2021V
JHEP 2106 145 Search for charged Higgs bosons decaying into a top quark and a bottom quark at $ \sqrt{\mathrm{s}} $ = 13 TeV with the ATLAS detector
SIRUNYAN 2021W
EPJ C81 723 Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton?proton collisions at $\sqrt{s} = 13\,{\text {TeV}} $
AAD 2020W
JHEP 2006 151 Search for dijet resonances in events with an isolated charged lepton using $\sqrt{s} = 13$ TeV proton-proton collision data collected by the ATLAS detector
SIRUNYAN 2020AV
JHEP 2001 096 Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at $ \sqrt{\mathrm{s}} $ = 13 TeV
SIRUNYAN 2020BE
PR D102 072001 Search for a light charged Higgs boson in the H$^\pm$ $\to $ cs channel in proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2020AO
JHEP 2007 126 Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $ \sqrt{s} $ = 13 TeV
SIRUNYAN 2019AH
JHEP 1907 142 Search for charged Higgs bosons in the H$^{\pm}$ $\to$ $\tau^{\pm}\nu_\tau$ decay channel in proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2019CC
PRL 123 131802 Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with e$\mu\mu$ or $\mu\mu\mu$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV
SIRUNYAN 2019CQ
PL B798 134985 Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV
SIRUNYAN 2019BP
PL B795 281 Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at $\sqrt{s} =$ 13TeV
AABOUD 2018CH
PL B787 68 Search for resonant $WZ$ production in the fully leptonic final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector
AABOUD 2018CD
JHEP 1811 085 Search for charged Higgs bosons decaying into top and bottom quarks at $\sqrt{s}$ = 13 TeV with the ATLAS detector
AABOUD 2018BW
JHEP 1809 139 Search for charged Higgs bosons decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$ in the $\tau$+jets and $\tau$+lepton final states with 36 fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV with the ATLAS experiment
HALLER 2018
EPJ C78 675 Update of the global electroweak fit and constraints on two-Higgs-doublet models
SIRUNYAN 2018DO
JHEP 1811 115 Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at $ \sqrt{s}=8 $ TeV
MISIAK 2017
EPJ C77 201 Weak Radiative Decays of the ${{\mathit B}}$ Meson and Bounds on $\mathit M_{{{\mathit H}^{\pm}}}$ in the Two-Higgs-Doublet Model
SIRUNYAN 2017AE
PRL 119 141802 Search for Charged Higgs Bosons Produced via Vector Boson Fusion and Decaying into a Pair of ${{\mathit W}}$ and ${{\mathit Z}}$ Bosons using ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 13 TeV
AABOUD 2016A
PL B759 555 Search for Charged Higgs Bosons Produced in Association with a top Quark and Decaying via ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ using ${{\mathit p}}{{\mathit p}}$ Collision Data Recorded at $\sqrt {s }$ = 13 TeV by the ATLAS Detector
AAD 2016AJ
JHEP 1603 127 Search for Charged Higgs Bosons in the ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ Decay Channel in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV using the ATLAS Detector
AAD 2015AF
JHEP 1503 088 Search for Charged Higgs Bosons Decaying via ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}^{\pm}}{{\mathit \nu}}$ in Fully Hadronic Final States using ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015M
PRL 114 231801 Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit Z}}$ using ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Experiment
KHACHATRYAN 2015AX
JHEP 1511 018 Search for a Charged Higgs Boson in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2015BF
JHEP 1512 178 Search for a Light Charged Higgs Boson Decaying to ${\mathit {\mathit c}}{\mathit {\overline{\mathit s}}}$ in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV
AAD 2014M
PR D89 032002 Search for a Multi-Higgs-Boson Cascade in ${{\mathit W}^{+}}{{\mathit W}^{-}}{\mathit {\mathit b}}{\mathit {\overline{\mathit b}}}$ Events with the ATLAS Detector in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV
AALTONEN 2014A
PR D89 091101 Study of Top-Quark Production and Decays involving a Tau Lepton at CDF and Limits on a Charged-Higgs Boson Contribution
AAD 2013V
JHEP 1303 076 Search for Charged Higgs Bosons through the Violation of Lepton Universality in ${\mathit {\mathit t}}{\mathit {\overline{\mathit t}}}$ Events using ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ = 7 TeV with the ATLAS Experiment
AAD 2013AC
EPJ C73 2465 Search for a light charged Higgs Boson in the Decay Channel ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit s}}}$ in ${\mathit {\mathit t}}{\mathit {\overline{\mathit t}}}$ Events using ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
LEP 2013
EPJ C73 2463 Search for Charged Higgs bosons: Combined Results using LEP Data
AAD 2012BH
JHEP 1206 039 Search for Charged Higgs Bosons Decaying via ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ in ${\mathit {\mathit t}}{\mathit {\overline{\mathit t}}}$ Events using ${{\mathit p}}{{\mathit p}}$ Collision Data at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
ABBIENDI 2012
EPJ C72 2076 Search for Charged Higgs Bosons in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = $189 - 209$ GeV
CHATRCHYAN 2012AA
JHEP 1207 143 Search for a Light Charged Higgs Boson in Top Quark Decays in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
AALTONEN 2011P
PRL 107 031801 Search for a Very Light $\mathit CP$-Odd Higgs Boson in Top Quark Decays from ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
DESCHAMPS 2010
PR D82 073012 Two Higgs Doublet Model of Type II Facing Flavor Physics Data
AALTONEN 2009AJ
PRL 103 101803 Search for Charged Higgs Bosons in Decays of Top Quarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96$~$TeV
ABAZOV 2009P
PRL 102 191802 Search for Charged Higgs Bosons Decaying into Top and Bottom Quarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions
ABAZOV 2009AI
PL B682 278 Search for Charged Higgs Bosons in Top Quark Decays
ABAZOV 2009AC
PR D80 051107 Search for Charged Higgs Bosons in Decays of Top Quarks
ABAZOV 2009AG
PR D80 071102 Combination of ${{\mathit t}}{{\overline{\mathit t}}}$ Cross Section Measurements and Constraints on the Mass of the Top Quark and Its Decays into Charged Higgs Bosons
ABULENCIA 2006E
PRL 96 042003 Search for Charged Higgs Bosons from Top Quark Decays in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABBIENDI 2004
EPJ C32 453 Search for Anomalous Production of Dilepton Events with Missing Transverse Momentum in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = $183 - 209$ GeV
ABDALLAH 2004I
EPJ C34 399 Search for Charged Higgs Bosons at LEP in General Two Higgs Doublet Models
ABBIENDI 2003
PL B551 35 A Measurement of the ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{\mu}}}{{\mathit \nu}_{{\tau}}}$ Branching Ratios
ACHARD 2003E
PL B575 208 Search for Charged Higgs Bosons at LEP
ABAZOV 2002B
PRL 88 151803 Direct Search for Charged Higgs Bosons in Decays of Top Quarks
BORZUMATI 2002
PL B549 170 Lower Bounds on Charged Higgs Bosons from LEP and Tevatron
HEISTER 2002P
PL B543 1 Search for Charged Higgs Bosons in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at Energies up to $\sqrt {s }$ = 209-GeV
ABBIENDI 2001Q
PL B520 1 Measurement of the Branching Ratio for the Process ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}{{\mathit X}}$
BARATE 2001E
EPJ C19 213 Measurements of B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}{{\mathit X}}$ ) and B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}{{\mathit D}^{*\pm}}{{\mathit X}}$ ) and upper Limits on B( ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}$ ) and B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit s}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ )
GAMBINO 2001
NP B611 338 Quark Mass Effects in $\rightarrow$ ${{\mathit X}}$ $_{s}$ ${{\mathit \gamma}}$
AFFOLDER 2000I
PR D62 012004 Search for the Charged Higgs Boson in the Decays of top Quark Pairs in the ${{\mathit e}}{{\mathit \tau}}$ and ${{\mathit \mu}}{{\mathit \tau}}$ Channels at $\sqrt {s }$ = 1.8 TeV
ABBIENDI 1999E
EPJ C7 407 Search for Higgs Bosons in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at 183 GeV
ABBOTT 1999E
PRL 82 4975 Search for Charged Higgs Bosons in Decays of Top Quark Pairs
ACKERSTAFF 1999D
EPJ C8 3 Measurement of the Michel Parameters in Leptonic ${{\mathit \tau}}$ Decays
ACCIARRI 1997F
PL B396 327 Measurement of ${{\mathit D}_{{s}}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}$ and a New Limit for ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}$
AMMAR 1997B
PRL 78 4686 A Measurement of the Michel Parameters in Leptonic Decays of the ${{\mathit \tau}}$
COARASA 1997
PL B406 337 The tan $\beta $ $−$ M$_{{{\mathit H}^{\pm}}}$ Bound from Inclusive Semitauonic ${{\mathit B}}$ Decays in the MSSM
GUCHAIT 1997
PR D55 7263 Constraints on the Charged Higgs Sector from the Tevatron Collider Data on top Quark Decay
MANGANO 1997
PL B410 299 The Contribution of ${{\mathit B}_{{c}}}$ Mesons to the Search for ${{\mathit B}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$ Decays at LEP
STAHL 1997
ZPHY C74 73 Testing the Lorentz Structure of the Charged Weak Current in ${{\mathit \tau}}$ Decays
ALAM 1995
PRL 74 2885 First Measurement of the Rate for the Inclusive Radiative Penguin Decay ${\mathit {\mathit b}}$ $\rightarrow$ ${\mathit {\mathit s}}{{\mathit \gamma}}$
BUSKULIC 1995
PL B343 444 Measurement of the ${\mathit {\mathit b}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}{{\mathit X}}$ Branching Ratio and an Upper Limit on ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{\tau}}}$