$\mathit CP$ VIOLATION

$\mathit A_{CP}$ is defined as
${B( {{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}})–B( {{\mathit B}^{+}} \rightarrow {{\mathit f}})\over B( {{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}})+B( {{\mathit B}^{+}} \rightarrow {{\mathit f}})}$,
the $\mathit CP$-violation charge asymmetry of exclusive ${{\mathit B}^{-}}$ and ${{\mathit B}^{+}}$ decay.

$\mathit A_{ADS}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{*}}$( ${{\mathit D}}{{\mathit \pi}^{0}}$) ${{\mathit K}^{+}}$)

INSPIRE   PDGID:
S041A46
${{\mathit A}_{{{ADS}}}}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit D}^{*}}$( ${{\mathit D}}{{\mathit \pi}^{0}}$) ${{\mathit K}^{+}}$) = (R${}^{-}_{{{\mathit K}}}$ $−$ R${}^{+}_{{{\mathit K}}}$) $/$ (R${}^{-}_{{{\mathit K}}}$ + R${}^{+}_{{{\mathit K}}}$), where R${}^{-}_{{{\mathit K}}}$ = $\Gamma $( ${{\mathit B}^{-}}$ $\rightarrow$ ( [ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\mathit \pi}^{0}}$ )$_{{{\mathit D}^{*}}}$ ${{\mathit K}^{-}}$) $/$ $\Gamma $( ${{\mathit B}^{-}}$ $\rightarrow$ ( [ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ]$_{D}$ ${{\mathit \pi}^{0}}$ )$_{{{\mathit D}^{*}}}$ ${{\mathit K}^{-}}$) and R${}^{+}_{{{\mathit K}}}$ = $\Gamma $( ${{\mathit B}^{+}}$ $\rightarrow$ ( [ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ]$_{D}$ ${{\mathit \pi}^{0}}$ )$_{{{\mathit D}^{*}}}$ ${{\mathit K}^{+}}$) $/$ $\Gamma $( ${{\mathit B}^{+}}$ $\rightarrow$ ( [ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\mathit \pi}^{0}}$ )$_{{{\mathit D}^{*}}}$ ${{\mathit K}^{+}}$)
VALUE DOCUMENT ID TECN  COMMENT
$0.717$ $\pm0.286$ 1
AAIJ
2021Q
LHCB ${{\mathit p}}{{\mathit p}}$ at 7, 8, 13 TeV
1  The statistical and systematic uncertainties have been combined according to the correlations between the R${}^{-}_{K}$ and R${}^{+}_{K}$ observables.
Conservation Laws:
$\mathit CP$ INVARIANCE
References