TESTS OF $\Delta \mathit S$ = $\Delta \mathit Q$ RULE

Re(x$_{+}$)

INSPIRE   PDGID:
S011XRP
A non-zero value would violate the $\Delta \mathit S$ = $\Delta \mathit Q$ rule in $\mathit CPT$ conserving transitions. x$_{+}$ is defined above in the Re(x$_{-}$) section.

VALUE ($ 10^{-3} $) EVTS DOCUMENT ID TECN
$\bf{ -0.9 \pm3.0}$ OUR AVERAGE
$-2$ $\pm10$ 1
BATLEY
2007D
NA48
$-0.5$ $\pm3.6$ 13k 2
AMBROSINO
2006E
KLOE
$-1.8$ $\pm6.1$ 3
ANGELOPOULOS
1998D
CPLR
1  Result obtained from the measurement $\Gamma $( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit e}}{{\mathit \nu}}$) $/$ $\Gamma $( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit e}}{{\mathit \nu}}$) = $0.993$ $\pm0.34$, neglecting possible $\mathit CPT$ non-invariance and using PDG 2006 values of B( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit e}}{{\mathit \nu}}$) = $0.4053$ $\pm0.0015$, ${\mathit \tau}_{{{\mathit L}}}$ = ($5.114$ $\pm0.021$) $ \times 10^{-8}$ s and ${\mathit \tau}_{{{\mathit S}}}$ = ($0.8958$ $\pm0.0005$) $ \times 10^{-10}~$s.
2  Re(x$_{+}$) can be shown to be equal to the following combination of rates: Re(x$_{+}$) = ${1\over 2}{ \Gamma ( {{\mathit K}_S^0} \rightarrow {{\mathit \pi}} {{\mathit e}} {{\mathit \nu}}) − \Gamma ( {{\mathit K}_L^0} \rightarrow {{\mathit \pi}} {{\mathit e}} {{\mathit \nu}})\over \Gamma ( {{\mathit K}_S^0} \rightarrow {{\mathit \pi}} {{\mathit e}} {{\mathit \nu}}) + \Gamma ( {{\mathit K}_L^0} \rightarrow {{\mathit \pi}} {{\mathit e}} {{\mathit \nu}})}$ which is valid up to first order in terms violating $\mathit CPT$ and/or the $\Delta \mathit S$ = $\Delta \mathit Q$ rule.
3  Obtained neglecting $\mathit CPT$ violating amplitudes.
Conservation Laws:
$\Delta \mathit S$ = $\Delta \mathit Q$ RULE
References