$\mathit CP$ VIOLATION

$\mathit A_{CP}$ is defined as
${B( {{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}} )–B( {{\mathit B}^{+}} \rightarrow {{\mathit f}} )\over B( {{\mathit B}^{-}} \rightarrow {{\overline{\mathit f}}} )+B( {{\mathit B}^{+}} \rightarrow {{\mathit f}} )}$,
the $\mathit CP$-violation charge asymmetry of exclusive ${{\mathit B}^{-}}$ and ${{\mathit B}^{+}}$ decay.

$\mathit A_{CP}$( ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{*+}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ )

INSPIRE   PDGID:
S041CR2
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ -0.09 \pm0.14}$ OUR AVERAGE
$0.01$ ${}^{+0.26}_{-0.24}$ $\pm0.02$
AUBERT
2009T
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
$-0.13$ ${}^{+0.17}_{-0.16}$ $\pm0.01$
WEI
2009A
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(4S)}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$0.03$ $\pm0.23$ $\pm0.03$
AUBERT,B
2006J
BABR Repl. by AUBERT 2009T
Conservation Laws:
$\mathit CP$ INVARIANCE
References:
AUBERT 2009T
PRL 102 091803 Direct $\mathit CP$, Lepton Flavor, and Isospin Asymmetries in the Decays ${{\mathit B}}$ $\rightarrow$ ${{\mathit K}^{{(*)}}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
Also
EPAPS Document No. E-PRLTAO-102-060910 Direct $\mathit CP$, Lepton Flavor, and Isospin Asymmetries in the Decays ${{\mathit B}}$ $\rightarrow$ ${{\mathit K}^{{(*)}}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
WEI 2009A
PRL 103 171801 Measurement of the Differential Branching Fraction and Forward-Backward Asymmetry for ${{\mathit B}}$ $\rightarrow$ ${{\mathit K}^{{(*)}}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
Also
EPAPS Supplement EPAPS#tex{\_}#ascii{_}appendix.pdf Measurement of the Differential Branching Fraction and Forward-Backward Asymmetry for ${{\mathit B}}$ $\rightarrow$ ${{\mathit K}^{(*)}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
AUBERT,B 2006J
PR D73 092001 Measurements of Branching Fractions, Rate Asymmetries, and Angular Distributions in the Rare Decays ${{\mathit B}}$ $\rightarrow$ ${{\mathit K}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ and ${{\mathit B}}$ $\rightarrow$ ${{\mathit K}^{*}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$