MULTIPOLE AMPLITUDES IN ${{\mathit \chi}_{{c2}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ RADIATIVE DECAY

$\mathit a_{2}$ = $\mathit M2/\sqrt {\mathit E1{}^{2}+\mathit M2{}^{2}+\mathit E3{}^{2} }$ Magnetic quadrupole fractional transition amplitude

INSPIRE   PDGID:
M057A1
VALUE ($ 10^{-2} $) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ -11.0 \pm1.0}$ OUR AVERAGE
$-12.0$ $\pm1.3$ $\pm0.4$ 89k 1
ABLIKIM
2017N
BES3 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
$-9.3$ $\pm1.6$ $\pm0.3$ 19.8k 2
ARTUSO
2009
CLEO ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
$-9.3$ ${}^{+3.9}_{-4.1}$ $\pm0.6$ 5.9k 3
AMBROGIANI
2002
E835 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \gamma}}$
$-14$ $\pm6$ 1.9k 3
ARMSTRONG
1993E
E760 ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \gamma}}$
$-33.3$ ${}^{+11.6}_{-29.2}$ 441 3
OREGLIA
1982
CBAL ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}{{\mathit \gamma}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \gamma}}{{\mathit \gamma}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$-7.9$ $\pm1.9$ $\pm0.3$ 19.8k 4
ARTUSO
2009
CLEO ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
1  Correlated with ${{\mathit a}_{{3}}}$, ${{\mathit b}_{{2}}}$, and ${{\mathit b}_{{3}}}$ with correlation coefficients $\rho _{ {{\mathit a}_{{2}}} {{\mathit a}_{{3}}} }$ = $0.733$, $\rho _{ {{\mathit a}_{{2}}} {{\mathit b}_{{2}}} }$ = $-0.605$, and $\rho _{ {{\mathit a}_{{2}}} {{\mathit b}_{{3}}} }$ = $-0.095$.
2  From a fit with floating $\mathit M2$ amplitudes $\mathit a_{2}$ and $\mathit b_{2}$, and fixed $\mathit E3$ amplitudes $\mathit a_{3}=\mathit b_{3}$=0.
3  Assuming $\mathit a_{3}$=0.
4  From a fit with floating $\mathit M2$ and $\mathit E3$ amplitudes $\mathit a_{2}$, $\mathit b_{2}$, and $\mathit a_{3}$, and $\mathit b_{3}$.
References:
ABLIKIM 2017N
PR D95 072004 Measurement of Higher-Order Multipole Amplitudes in ${{\mathit \psi}{(3686)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{c1,2}}}$ with ${{\mathit \chi}_{{c1,2}}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}}$ and Search for the Transition ${{\mathit \eta}_{{c}}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}}$
ARTUSO 2009
PR D80 112003 Higher-Order Multipole Amplitudes in Charmonium Radiative Transitions
AMBROGIANI 2002
PR D65 052002 Study of the Angular Distributions of the Reactions ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}$ , ${{\mathit \chi}_{{c2}}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \gamma}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit \gamma}}$
ARMSTRONG 1993E
PR D48 3037 Study of the Angular Distribution of the Reaction ${{\overline{\mathit p}}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit \gamma}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit \gamma}}$
OREGLIA 1982
PR D25 2259 Study of the Reaction ${{\mathit \psi}^{\,'}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit J / \psi}}$
Also
Private Comm. Private Communication