${{\boldsymbol \Upsilon}{(10860)}}$ WIDTH INSPIRE search

VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ 51 {}^{+6}_{-7}}$ OUR AVERAGE
$40.6$ ${}^{+12.7}_{-8.0}$ ${}^{+1.1}_{-19.1}$ 1
MIZUK
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit h}_{{b}}{(1P,2P)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$53.7$ ${}^{+7.1}_{-5.6}$ ${}^{+1.3}_{-5.4}$ 2
SANTEL
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S,2S,3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
• • • We do not use the following data for averages, fits, limits, etc. • • •
$48.5$ ${}^{+1.9}_{-1.8}$ ${}^{+2.0}_{-2.8}$ 3, 4
SANTEL
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$46$ ${}^{+9}_{-7}$ 5, 6
CHEN
2010
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$30.7$ ${}^{+8.3}_{-7.0}$ $\pm3.1$ 7
CHEN
2010
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S,2S,3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$43$ $\pm4$ 5
AUBERT
2009E
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$74$ $\pm4$ 8
AUBERT
2009E
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$112$ $\pm17$ $\pm23$ 9
BESSON
1985
CLEO ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$110$ $\pm15$ 10
LOVELOCK
1985
CUSB ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
1  From a simultaneous fit to the ${{\mathit h}_{{b}}{(nP)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , $\mathit n$ = 1, 2 cross sections at 22 energy points within $\sqrt {s }$ = $10.77 - 11.02$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each $\mathit n$). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
2  From a simultaneous fit to the ${{\mathit \Upsilon}{(nS)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , $\mathit n$ = 1, 2, 3 cross sections at 25 energy points within $\sqrt {s }$ = $10.6 - 11.05$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with fourteen resonance parameters (a mass, width, and three amplitudes for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, a single universal relative phase, and three decoherence coefficients, one for each $\mathit n$). Continuum contributions were measured (and therefore fixed) to be zero.
3  From a fit to the total hadronic cross sections measured at 60 energy points within $\sqrt {s }$ = $10.82 - 11.05$ GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with 1/$\sqrt {s }$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, one relative phase, and one decoherence coefficient).
4  Not including uncertain and potentially large systematic errors due to assumed continuum amplitude 1/$\sqrt {s }$ dependence and related interference contributions.
5  In a model where a flat non-resonant ${{\mathit b}}{{\overline{\mathit b}}}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.
6  The parameters of the ${{\mathit \Upsilon}{(11020)}}$ are fixed to those in AUBERT 2009E.
7  In a model where a flat nonresonant ${{\mathit \Upsilon}{(1S,2S,3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ continuum interferes with a single Breit-Wigner resonance.
8  In a model where a non-resonant ${{\mathit b}}{{\overline{\mathit b}}}$ -continuum represented by a threshold function at $\sqrt {s }=2{\mathit m}_{{{\mathit B}}}$ is incoherently added to a flat component interfering with two Breit-Wigner resonances. Not independent of other AUBERT 2009E results. Systematic uncertainties not estimated.
9  Assuming four Gaussians with radiative tails and a single step in $\mathit R$.
10  In a coupled-channel model with three resonances and a smooth step in $\mathit R$.
  References:
MIZUK 2016
PRL 117 142001 Energy Scan of the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit h}_{{b}}}$( ${{\mathit n}}{{\mathit P}}$) ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ (n=1,2) Cross Sections and Evidence for ${{\mathit \Upsilon}{(11020)}}$ Decays into Charged Bottomonium-like States
SANTEL 2016
PR D93 011101 Measurements of the ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$ Resonances via $\sigma\mathrm {( {{\mathit e}^{+}} {{\mathit e}^{-}} \rightarrow {{\mathit \Upsilon}{(nS)}} {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} )}$
CHEN 2010
PR D82 091106 Observation of an Enhancement in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, ${{\mathit \Upsilon}{(2S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, and ${{\mathit \Upsilon}{(3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ Production near $\sqrt {s }$ = 10.89 GeV
AUBERT 2009E
PRL 102 012001 Measurement of the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ Cross Section between $\sqrt {s }$ = 10.54 and 11.20 GeV
BESSON 1985
PRL 54 381 Observation of New Structure in the ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Cross Section above the ${{\mathit \Upsilon}{(4S)}}$
LOVELOCK 1985
PRL 54 377 Masses, Widths and Leptonic Widths of the Higher ${{\mathit \Upsilon}}$ Resonances