${\mathit {\mathit c}}$-QUARK MASS INSPIRE search

The ${{\mathit c}}$-quark mass corresponds to the ``running'' mass ${\mathit m}_{{{\mathit c}}}$ ($\mu $ = ${\mathit m}_{{{\mathit c}}}$) in the $\overline{\rm{}MS}$ scheme. We have converted masses in other schemes to the $\overline{\rm{}MS}$ scheme using two-loop QCD perturbation theory with ${{\mathit \alpha}_{{s}}}({{\mathit \mu}}={\mathit m}_{{{\mathit c}}}$) = $0.38$ $\pm0.03$. The value $1.27$ $\pm0.03$ (GeV) for the $\overline{\rm{}MS}$ mass corresponds to $1.67$ $\pm0.07$ GeV for the pole mass (see the ``Note on Quark Masses'').
VALUE (GeV) DOCUMENT ID TECN COMMENT
$\bf{ 1.27 \pm0.03}$ OUR EVALUATION
$1.246$ $\pm0.023$ 1
KIYO 2016
THEO $\overline{\rm{}MS}$ scheme
$1.2715$ $\pm0.0095$ 2
CHAKRABORTY 2015
LATT $\overline{\rm{}MS}$ scheme
$1.288$ $\pm0.020$ 3
DEHNADI 2015
THEO $\overline{\rm{}MS}$ scheme
$1.348$ $\pm0.046$ 4
CARRASCO 2014
LATT $\overline{\rm{}MS}$ scheme
$1.26$ $\pm0.05$ $\pm0.04$ 5
ABRAMOWICZ 2013C
COMB $\overline{\rm{}MS}$ scheme
$1.24$ $\pm0.03$ ${}^{+0.03}_{-0.07}$ 6
ALEKHIN 2013
THEO $\overline{\rm{}MS}$ scheme
$1.282$ $\pm0.011$ $\pm0.022$ 7
DEHNADI 2013
THEO $\overline{\rm{}MS}$ scheme
$1.286$ $\pm0.066$ 8
NARISON 2013
THEO $\overline{\rm{}MS}$ scheme
$1.159$ $\pm0.075$ 9
SAMOYLOV 2013
NOMD $\overline{\rm{}MS}$ scheme
$1.36$ $\pm0.04$ $\pm0.10$ 10
ALEKHIN 2012
THEO $\overline{\rm{}MS}$ scheme
$1.261$ $\pm0.016$ 11
NARISON 2012A
THEO $\overline{\rm{}MS}$ scheme
$1.278$ $\pm0.009$ 12
BODENSTEIN 2011
THEO $\overline{\rm{}MS}$ scheme
$1.28$ ${}^{+0.07}_{-0.06}$ 13
LASCHKA 2011
THEO $\overline{\rm{}MS}$ scheme
$1.196$ $\pm0.059$ $\pm0.050$ 14
AUBERT 2010A
BABR $\overline{\rm{}MS}$ scheme
$1.28$ $\pm0.04$ 15
BLOSSIER 2010
LATT $\overline{\rm{}MS}$ scheme
$1.279$ $\pm0.013$ 16
CHETYRKIN 2009
THEO $\overline{\rm{}MS}$ scheme
$1.25$ $\pm0.04$ 17
SIGNER 2009
THEO $\overline{\rm{}MS}$ scheme
*** We do not use the following data for averages, fits, limits, etc ***
$1.01$ $\pm0.09$ $\pm0.03$ 18
ALEKHIN 2011
THEO $\overline{\rm{}MS}$ scheme
$1.299$ $\pm0.026$ 19
BODENSTEIN 2010
THEO $\overline{\rm{}MS}$ scheme
$1.273$ $\pm0.006$ 20
MCNEILE 2010
LATT $\overline{\rm{}MS}$ scheme
$1.261$ $\pm0.018$ 21
NARISON 2010
THEO $\overline{\rm{}MS}$ scheme
$1.268$ $\pm0.009$ 22
ALLISON 2008
LATT $\overline{\rm{}MS}$ scheme
$1.286$ $\pm0.013$ 23
KUHN 2007
THEO $\overline{\rm{}MS}$ scheme
$1.295$ $\pm0.015$ 24
BOUGHEZAL 2006
THEO $\overline{\rm{}MS}$ scheme
$1.24$ $\pm0.09$ 25
BUCHMUELLER 2006
THEO $\overline{\rm{}MS}$ scheme
$1.224$ $\pm0.017$ $\pm0.054$ 26
HOANG 2006
THEO $\overline{\rm{}MS}$ scheme
$1.33$ $\pm0.10$ 27
AUBERT 2004X
THEO $\overline{\rm{}MS}$ scheme
$1.29$ $\pm0.07$ 28
HOANG 2004
THEO $\overline{\rm{}MS}$ scheme
$1.319$ $\pm0.028$ 29
DEDIVITIIS 2003
LATT $\overline{\rm{}MS}$ scheme
$1.19$ $\pm0.11$ 30
EIDEMULLER 2003
THEO $\overline{\rm{}MS}$ scheme
$1.289$ $\pm0.043$ 31
ERLER 2003
THEO $\overline{\rm{}MS}$ scheme
$1.26$ $\pm0.02$ 32
ZYABLYUK 2003
THEO $\overline{\rm{}MS}$ scheme
1  KIYO 2016 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from the ${{\mathit J / \psi}{(1S)}}$ mass at order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO).
2  CHAKRABORTY 2015 is a lattice QCD computation using 2+1+1 dynamical flavors. Moments of pseudoscalar current-current correlators are matched to ${{\mathit \alpha}_{{s}}^{3}}$-accurate QCD perturbation theory with the ${{\mathit \eta}_{{c}}}$ meson mass tuned to experiment.
3  DEHNADI 2015 determine ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) using sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons at order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO), and fitting to both experimental data and lattice results.
4  CARRASCO 2014 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with ${{\mathit m}_{{u}}}$ = ${{\mathit m}_{{d}}}{}\not=$ ${{\mathit m}_{{s}}}{}\not=$ ${{\mathit m}_{{c}}}$. The ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quark masses are obtained separately by using the ${{\mathit K}}$ meson mass splittings and lattice results for the electromagnetic contributions.
5  ABRAMOWICZ 2013C determines ${\mathit m}_{{{\mathit c}}}$ from charm production in deep inelastic ${{\mathit e}}{{\mathit p}}$ scattering, using the QCD prediction at NLO order. The uncertainties from model and parameterization assumptions, and the value of ${{\mathit \alpha}_{{s}}}$, of $\pm0.03$, $\pm 0.02$, and $\pm 0.02$ respectively, have been combined in quadrature.
6  ALEKHIN 2013 determines ${\mathit m}_{{{\mathit c}}}$ from charm production in deep inelastic scattering at HERA using approximate NNLO QCD.
7  DEHNADI 2013 determines ${\mathit m}_{{{\mathit c}}}$ using QCD sum rules for the charmonium spectrum and charm continuum to order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO). The statistical and systematic experimental errors of $\pm0.006$ and $\pm0.009$ have been combined in quadrature. The theoretical uncertainties $\pm0.019$ from truncation of the perturbation series, $\pm0.010$ from ${{\mathit \alpha}_{{s}}}$, and $\pm0.002$ from the gluon condensate have been combined in quadrature.
8  NARISON 2013 determines ${\mathit m}_{{{\mathit c}}}$ using QCD spectral sum rules to order ${{\mathit \alpha}_{{s}}^{2}}$ (NNLO) and including condensates up to dimension 6.
9  SAMOYLOV 2013 determines ${\mathit m}_{{{\mathit c}}}$ from a study of charm dimuon production in neutrino-iron scattering using the NLO QCD result for the charm quark production cross section.
10  ALEKHIN 2012 determines ${\mathit m}_{{{\mathit c}}}$ from heavy quark production in deep inelastic scattering at HERA using approximate NNLO QCD.
11  NARISON 2012A determines ${\mathit m}_{{{\mathit c}}}$ using sum rules for the vector current correlator to order ${{\mathit \alpha}_{{s}}^{3}}$, including the effect of gluon condensates up to dimension eight.
12  BODENSTEIN 2011 determine ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = $0.987$ $\pm0.009$ GeV and ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) = $1.278$ $\pm0.009$ GeV using QCD sum rules for the charm quark vector current correlator.
13  LASCHKA 2011 determine the ${{\mathit c}}$ mass from the charmonium spectrum. The theoretical computation uses the heavy potential to order 1/${\mathit m}_{{{\mathit Q}}}$ obtained by matching the short-distance perturbative result onto lattice QCD result at larger scales.
14  AUBERT 2010A determine the ${\mathit {\mathit b}}$- and ${\mathit {\mathit c}}$-quark masses from a fit to the inclusive decay spectra in semileptonic ${{\mathit B}}$ decays in the kinetic scheme (and convert it to the $\overline{\rm{}MS}$ scheme).
15  BLOSSIER 2010 determines quark masses from a computation of the hadron spectrum using ${{\mathit N}_{{f}}}$=2 dynamical twisted-mass Wilson fermions.
16  CHETYRKIN 2009 determine ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Q}}{{\overline{\mathit Q}}}$ cross-section and sum rules, using an order ${{\mathit \alpha}_{{s}}^{3}}$ computation of the heavy quark vacuum polarization. They also determine ${\mathit m}_{{{\mathit c}}}$(3 GeV) = $0.986$ $\pm0.013$GeV.
17  SIGNER 2009 determines the ${\mathit {\mathit c}}$-quark mass using non-relativistic sum rules to analyze the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ cross-section near threshold. Also determine the PS mass ($\mu _{F}$= 0.7 GeV) = $1.50$ $\pm0.04$ GeV.
18  ALEKHIN 2011 determines ${\mathit m}_{{{\mathit c}}}$ from heavy quark production in deep inelastic scattering using fixed target and HERA data, and approximate NNLO QCD.
19  BODENSTEIN 2010 determines ${{\overline{\mathit m}}_{{c}}}$(3 GeV) = $1.008$ $\pm0.026$ GeV using finite energy sum rules for the vector current correlator. The authors have converted this to ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) using ${{\mathit \alpha}_{{s}}}({{\mathit M}_{{Z}}}$) = $0.1189$ $\pm0.0020$.
20  MCNEILE 2010 determines ${\mathit m}_{{{\mathit c}}}$ by comparing the order ${{\mathit \alpha}_{{s}}^{3}}$ perturbative results for the pseudo-scalar current to lattice simulations with ${{\mathit N}_{{f}}}$ = 2+1 sea-quarks by the HPQCD collaboration.
21  NARISON 2010 determines ${\mathit m}_{{{\mathit c}}}$ from ratios of moments of vector current correlators computed to order ${{\mathit \alpha}_{{s}}^{3}}$ and including the dimension-six gluon condensate.
22  ALLISON 2008 determine ${\mathit m}_{{{\mathit c}}}$ by comparing four-loop perturbative results for the pseudo-scalar current correlator to lattice simulations by the HPQCD collaboration. The result has been updated in MCNEILE 2010 .
23  KUHN 2007 determine ${{\overline{\mathit m}}_{{c}}}({{\mathit \mu}}$ = 3 GeV) = $0.986$ $\pm0.013$ GeV and ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from a four-loop sum-rule computation of the cross-section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons in the charm threshold region.
24  BOUGHEZAL 2006 result comes from the first moment of the hadronic production cross-section to order ${{\mathit \alpha}_{{s}}^{3}}$.
25  BUCHMUELLER 2006 determine ${{\mathit m}_{{b}}}$ and ${{\mathit m}_{{c}}}$ by a global fit to inclusive ${{\mathit B}}$ decay spectra.
26  HOANG 2006 determines ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from a global fit to inclusive ${{\mathit B}}$ decay data. The ${{\mathit B}}$ decay distributions were computed to order ${{\mathit \alpha}_{{s}}^{2}}{{\mathit \beta}_{{0}}}$, and the conversion between different ${{\mathit m}_{{c}}}$ mass schemes to order ${{\mathit \alpha}_{{s}}^{3}}$.
27  AUBERT 2004X obtain ${\mathit m}_{{{\mathit c}}}$ from a fit to the hadron mass and lepton energy distributions in semileptonic ${{\mathit B}}$ decay. The paper quotes values in the kinetic scheme. The $\overline{\rm{}MS}$ value has been provided by the BABAR collaboration.
28  HOANG 2004 determines ${{\overline{\mathit m}}_{{c}}}({{\overline{\mathit m}}_{{c}}}$) from moments at order ${{\mathit \alpha}_{{s}}^{2}}$ of the charm production cross-section in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation.
29  DEDIVITIIS 2003 use a quenched lattice computation of heavy-heavy and heavy-light meson masses.
30  EIDEMULLER 2003 determines m$_{b}$ and m$_{c}$ using QCD sum rules.
31  ERLER 2003 determines m$_{b}$ and m$_{c}$ using QCD sum rules. Includes recent BES data.
32  ZYABLYUK 2003 determines m$_{c}$ by using QCD sum rules in the pseudoscalar channel and comparing with the $\eta _{c}$ mass.
References
KIYO 2016
PL B752 122 Determination of ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from Quarkonium $1S{}^{}$ Energy Levels in Perturbative QCD
CHAKRABORTY 2015
PR D91 054508 High-Precision Quark Masses and QCD Coupling from ${{\mathit n}_{{f}}}$ 4 Lattice QCD
DEHNADI 2015
JHEP 1508 155 Bottom and Charm Mass Determinations with a Convergence Test
CARRASCO 2014
NP B887 19 Up, Down, Strange and Charm Quark Masses with $\mathit N_{f}$ = 2+1+1 Twisted Mass Lattice QCD
ABRAMOWICZ 2013C
EPJ C73 2311 Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ${{\mathit e}}{{\mathit p}}$ Scattering at HERA
ALEKHIN 2013
PL B720 172 Precise Charm-Quark Mass from Deep-Inelastic Scattering
DEHNADI 2013
JHEP 1309 103 Charm Mass Determination from QCD Charmonium Sum Rules at Order ${{\mathit \alpha}^{3}_{{s}}}$
NARISON 2013
PL B718 1321 A Fresh Look into ${{\overline{\mathit m}}_{{c,b}}}({{\overline{\mathit m}}_{{c,b}}}$) and Precise ${{\mathit f}}_{{{\mathit D}}_{(s)},{{\mathit B}}_{(s)}}$ from Heavy$−$Light QCD Spectral Sum Rules
SAMOYLOV 2013
NP B876 339 A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment
ALEKHIN 2012
PL B718 550 Determination of the Charm-Quark Mass in the $\overline{\rm{}MS}$ Scheme using Charm Production Data from Deep-Inelastic Scattering at HERA
NARISON 2012A
PL B706 412 Gluon Condensates and Precise ${{\overline{\mathit m}}_{{c,b}}}$ from QCD-Moments and their Ratios to Order $\mathit \alpha {}^{3}_{s}$ and $<\mathit G{}^{4}>$
ALEKHIN 2011
PL B699 345 Heavy-Quark Deep-Inelastic Scattering with a Running Mass
BODENSTEIN 2011
PR D83 074014 QCD Sum Rule Determination of the Charm-Quark Mass
LASCHKA 2011
PR D83 094002 Quark-Antiquark Potential to Order 1/${{\mathit m}}$ and Heavy Quark Masses
AUBERT 2010A
PR D81 032003 Measurement and Interpretation of Moments in Inclusive Semileptonic Decays ${{\overline{\mathit B}}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}}$
BLOSSIER 2010
PR D82 114513 Average up/down, strange, and charm Quark Masses with $\mathit N_{f}$=2 Twisted-Mass Lattice QCD
BODENSTEIN 2010
PR D82 114013 Charm-Quark Mass from Weighted Finite Energy QCD Sum Rules
MCNEILE 2010
PR D82 034512 High-Precision ${\mathit {\mathit c}}$ and ${\mathit {\mathit b}}$ Masses, and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD
NARISON 2010
PL B693 559 Gluon Condensates and ${\mathit {\mathit c}}$, ${\mathit {\mathit b}}$ Quark Masses from Quarkonia Ratios of Moments
CHETYRKIN 2009
PR D80 074010 Charm and Bottom Quark Masses: An Update
SIGNER 2009
PL B672 333 The Charm Quark Mass from non-Relativistic Sum Rules
ALLISON 2008
PR D78 054513 High-Precision Charm-Quark Mass and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD
KUHN 2007
NP B778 192 Heavy Quark Masses from Sum Rules in Four-Loop Approximation
BOUGHEZAL 2006
PR D74 074006 Charm- and Bottom-Quark Masses from Perturbative QCD
BUCHMUELLER 2006
PR D73 073008 Fit to Moments of Inclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\overline{\mathit \nu}}}$ and ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{s}}}{{\mathit \gamma}}$ Decay Distributions using Heavy Quark Expansions in the Kinetic Scheme
HOANG 2006
PL B633 526 Charm Quark Mass from Inclusive Semileptonic ${{\mathit B}}$ Decays
AUBERT 2004X
PRL 93 011803 Determination of the Branching Fraction for ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\mathit \nu}}$ Decays and of $\vert {{\mathit V}_{{cb}}}\vert $ from Hadronic-Mass and Lepton-Energy Moments
HOANG 2004
PL B594 127 $\overline{\rm{}MS}$ Charm Mass from Charmonium Sum Rules with Contour Improvement
DEDIVITIIS 2003
NP B675 309 Heavy Quark Masses in the Continuum Limit of Quenched Lattice QCD
EIDEMULLER 2003
PR D67 113002 QCD Moment Sum Rules for Coulomb Systems: the Charm and Bottom Quark Masses
ERLER 2003
PL B558 125 Precision Determination of Heavy Quark Masses and the Strong Coupling Constant
ZYABLYUK 2003
JHEP 0301 081 Gluon Condensate and ${\mathit {\mathit c}}$ Quark Mass in Pseudoscalar Sum Rules at Three Loop Order