${\boldsymbol {\boldsymbol b}}$-QUARK MASS INSPIRE search

${\mathit {\mathit b}}$-quark mass corresponds to the ``running mass'' ${{\overline{\mathit m}}_{{b}}}({{\mathit \mu}}$ = ${{\overline{\mathit m}}_{{b}}}$) in the $\overline{\rm{}MS}$ scheme. We have converted masses in other schemes to the $\overline{\rm{}MS}$ mass using two-loop QCD perturbation theory with ${{\mathit \alpha}_{{s}}}({{\mathit \mu}}$ = ${{\overline{\mathit m}}_{{b}}}$) = $0.223$ $\pm0.008$. The value $4.18$ ${}^{+0.04}_{-0.03}$ (GeV) for the $\overline{\rm{}MS}$ mass corresponds to $4.78$ $\pm0.06$ GeV for the pole mass, using the two-loop conversion formula. A discussion of masses in different schemes can be found in the ``Note on Quark Masses.''
VALUE (GeV) DOCUMENT ID TECN
$\bf{ 4.18 {}^{+0.04}_{-0.03}}$ OUR EVALUATION  of $\overline{\rm{}MS}$ Mass.
$4.197$ $\pm0.022$ 1
KIYO
2016
THEO
$4.183$ $\pm0.037$ 2
ALBERTI
2015
THEO
$4.203$ ${}^{+0.016}_{-0.034}$ 3
BENEKE
2015
THEO
$4.176$ $\pm0.023$ 4
DEHNADI
2015
THEO
$4.07$ $\pm0.17$ 5
ABRAMOWICZ
2014A
ZEUS
$4.201$ $\pm0.043$ 6
AYALA
2014A
THEO
$4.21$ $\pm0.11$ 7
BERNARDONI
2014
LATT
$4.169$ $\pm0.002$ $\pm0.008$ 8
PENIN
2014
THEO
$4.166$ $\pm0.043$ 9
LEE
2013O
LATT
$4.247$ $\pm0.034$ 10
LUCHA
2013
THEO
$4.236$ $\pm0.069$ 11
NARISON
2013
THEO
$4.213$ $\pm0.059$ 12
NARISON
2013A
THEO
$4.171$ $\pm0.009$ 13
BODENSTEIN
2012
THEO
$4.29$ $\pm0.14$ 14
DIMOPOULOS
2012
LATT
$4.235$ $\pm0.003$ $\pm0.055$ 15
HOANG
2012
THEO
$4.177$ $\pm0.011$ 16
NARISON
2012
THEO
$4.18$ ${}^{+0.05}_{-0.04}$ 17
LASCHKA
2011
THEO
$4.186$ $\pm0.044$ $\pm0.015$ 18
AUBERT
2010A
BABR
$4.164$ $\pm0.023$ 19
MCNEILE
2010
LATT
$4.163$ $\pm0.016$ 20
CHETYRKIN
2009
THEO
$4.243$ $\pm0.049$ 21
SCHWANDA
2008
BELL
• • • We do not use the following data for averages, fits, limits, etc. • • •
$4.212$ $\pm0.032$ 22
NARISON
2012
THEO
$4.171$ $\pm0.014$ 23
NARISON
2012A
THEO
$4.173$ $\pm0.010$ 24
NARISON
2010
THEO
$5.26$ $\pm1.2$ 25
ABDALLAH
2008D
DLPH
$4.42$ $\pm0.06$ $\pm0.08$ 26
GUAZZINI
2008
LATT
$4.347$ $\pm0.048$ $\pm0.08$ 27
DELLA-MORTE
2007
LATT
$4.164$ $\pm0.025$ 28
KUHN
2007
THEO
$4.19$ $\pm0.40$ 29
ABDALLAH
2006D
DLPH
$4.205$ $\pm0.058$ 30
BOUGHEZAL
2006
THEO
$4.20$ $\pm0.04$ 31
BUCHMUELLER
2006
THEO
$4.19$ $\pm0.06$ 32
PINEDA
2006
THEO
$4.4$ $\pm0.3$ 33
GRAY
2005
LATT
$4.22$ $\pm0.06$ 34
AUBERT
2004X
THEO
$4.17$ $\pm0.03$ 35
BAUER
2004
THEO
$4.22$ $\pm0.11$ 36
HOANG
2004
THEO
$4.25$ $\pm0.11$ 37
MCNEILE
2004
LATT
$4.22$ $\pm0.09$ 38
BAUER
2003
THEO
$4.19$ $\pm0.05$ 39
BORDES
2003
THEO
$4.20$ $\pm0.09$ 40
CORCELLA
2003
THEO
$4.33$ $\pm0.10$ 41
DEDIVITIIS
2003
LATT
$4.24$ $\pm0.10$ 42
EIDEMULLER
2003
THEO
$4.207$ $\pm0.03$ 43
ERLER
2003
THEO
$4.33$ $\pm0.06$ $\pm0.10$ 44
MAHMOOD
2003
CLEO
$4.190$ $\pm0.032$ 45
BRAMBILLA
2002
THEO
$4.346$ $\pm0.070$ 46
PENIN
2002
THEO
1  KIYO 2016 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from the ${{\mathit \Upsilon}{(1S)}}$ mass at order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO).
2  ALBERTI 2015 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from fits to inclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit e}}{{\overline{\mathit \nu}}}$ decay. They also find ${{\mathit m}}{}^{{\mathrm {kin}}}_{b}$(1 GeV) = $4.553$ $\pm0.020$ GeV.
3  BENEKE 2015 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) using sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons at order N3LO including finite ${\mathit m}_{{{\mathit c}}}$ effects. They find ${{\mathit m}}{}^{{\mathrm {PS}}}_{b}$(2 GeV) = $4.532$ ${}^{+0.013}_{-0.039}$ GeV, and ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) = $4.193$ ${}^{+0.022}_{-0.035}$ GeV. The value quoted is obtained using the four-loop conversion given in BENEKE 2016 .
4  DEHNADI 2015 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) using sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons at order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO), and fitting to both experimental data and lattice results.
5  ABRAMOWICZ 2014A determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) = $4.07$ $\pm0.14$ ${}^{+0.01}_{-0.07}{}^{+0.05}_{-0.00}{}^{+0.08}_{-0.05}$ from the production of ${\mathit {\mathit b}}$ quarks in ${{\mathit e}}{{\mathit p}}$ collisions at HERA. The errors due to fitting, modeling, PDF parameterization, and theoretical QCD uncertainties due to the values of ${{\mathit \alpha}_{{s}}}$, ${{\mathit m}_{{c}}}$, and the renormalization scale $\mu $ have been combined in quadrature.
6  AYALA 2014A determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from the ${{\mathit \Upsilon}{(1S)}}$ mass computed to N3LO order in perturbation theory using a renormalon subtracted scheme.
7  BERNARDONI 2014 determine ${{\mathit m}_{{b}}}$ from ${{\mathit N}_{{f}}}$ = 2 lattice calculations using heavy quark effective theory non-perturbatively renormalized and matched to QCD at 1/$\mathit m$ order.
8  PENIN 2014 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) = $4.169$ $\pm0.008$ $\pm0.002$ $\pm0.002$ using an estimate of the order ${{\mathit \alpha}_{{s}}^{3}}{\mathit {\mathit b}}$-quark vacuum polarization function in the threshold region, including finite ${\mathit m}_{{{\mathit c}}}$ effects. The errors of $\pm0.008$ from theoretical uncertainties, and $\pm0.002$ from ${{\mathit \alpha}_{{s}}}$ have been combined in quadrature.
9  LEE 2013O determines ${\mathit m}_{{{\mathit b}}}$ using lattice calculations of the ${{\mathit \Upsilon}}$ and ${{\mathit B}_{{s}}}$ binding energies in NRQCD, including three light dynamical quark flavors. The quark mass shift in NRQCD is determined to order ${{\mathit \alpha}_{{s}}^{2}}$, with partial ${{\mathit \alpha}_{{s}}^{3}}$ contributions.
10  LUCHA 2013 determines ${\mathit m}_{{{\mathit b}}}$ from QCD sum rules for heavy-light currents using the lattice value for ${{\mathit f}_{{B}}}$ of $191.5$ $\pm7.3$ GeV.
11  NARISON 2013 determines ${\mathit m}_{{{\mathit b}}}$ using QCD spectral sum rules to order ${{\mathit \alpha}_{{s}}^{2}}$ (NNLO) and including condensates up to dimension 6.
12  NARISON 2013A determines ${\mathit m}_{{{\mathit b}}}$ using HQET sum rules to order ${{\mathit \alpha}_{{s}}^{2}}$ (NNLO) and the ${{\mathit B}}$ meson mass and decay constant.
13  BODENSTEIN 2012 determine ${\mathit m}_{{{\mathit b}}}$ using sum rules for the vector current correlator and the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Q}}{{\overline{\mathit Q}}}$ total cross-section.
14  DIMOPOULOS 2012 determine quark masses from a lattice computation using ${{\mathit N}_{{f}}}$ = 2 dynamical flavors of twisted mass fermions.
15  HOANG 2012 determine ${\mathit m}_{{{\mathit b}}}$ using non-relativistic sum rules for the ${{\mathit \Upsilon}}$ system at order ${{\mathit \alpha}_{{s}}^{2}}$ (NNLO) with renormalization group improvement.
16  Determines ${\mathit m}_{{{\mathit b}}}$ to order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO), including the effect of gluon condensates up to dimension eight combining the methods of NARISON 2012 and NARISON 2012A.
17  LASCHKA 2011 determine the ${{\mathit b}}$ mass from the charmonium spectrum. The theoretical computation uses the heavy potential to order 1/${\mathit m}_{{{\mathit Q}}}$ obtained by matching the short-distance perturbative result onto lattice QCD result at larger scales.
18  AUBERT 2010A determine the ${\mathit {\mathit b}}$- and ${\mathit {\mathit c}}$-quark masses from a fit to the inclusive decay spectra in semileptonic ${{\mathit B}}$ decays in the kinetic scheme (and convert it to the $\overline{\rm{}MS}$ scheme).
19  MCNEILE 2010 determines ${\mathit m}_{{{\mathit b}}}$ by comparing order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO) perturbative results for the pseudo-scalar current to lattice simulations with ${{\mathit N}_{{f}}}$ = 2+1 sea-quarks by the HPQCD collaboration.
20  CHETYRKIN 2009 determine ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from the ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Q}}{{\overline{\mathit Q}}}$ cross-section and sum rules, using an order ${{\mathit \alpha}_{{s}}^{3}}$ (N3LO) computation of the heavy quark vacuum polarization.
21  SCHWANDA 2008 measure moments of the inclusive photon spectrum in ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{s}}}{{\mathit \gamma}}$ decay to determine ${{\mathit m}_{{b}}^{1S}}$. We have converted this to $\overline{\rm{}MS}$ scheme.
22  NARISON 2012 determines ${\mathit m}_{{{\mathit b}}}$ using exponential sum rules for the vector current correlator to order ${{\mathit \alpha}_{{s}}^{3}}$, including the effect of gluon condensates up to dimension eight.
23  NARISON 2012A determines ${\mathit m}_{{{\mathit b}}}$ using sum rules for the vector current correlator to order ${{\mathit \alpha}_{{s}}^{3}}$, including the effect of gluon condensates up to dimension eight.
24  NARISON 2010 determines ${\mathit m}_{{{\mathit b}}}$ from ratios of moments of vector current correlators computed to order ${{\mathit \alpha}_{{s}}^{3}}$ and including the dimension-six gluon condensate. These values are taken from the erratum to that reference.
25  ABDALLAH 2008D determine ${{\overline{\mathit m}}_{{b}}}({{\mathit M}_{{Z}}}$) = $3.76$ $\pm1.0$ GeV from a leading order study of four-jet rates at LEP.
26  GUAZZINI 2008 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from a quenched lattice simulation of heavy meson masses. The $\pm0.08$ is an estimate of the quenching error.
27  DELLA-MORTE 2007 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from a computation of the spin-averaged ${{\mathit B}}$ meson mass using quenched lattice HQET at order 1/${{\mathit m}}$. The $\pm0.08$ is an estimate of the quenching error.
28  KUHN 2007 determine ${{\overline{\mathit m}}_{{b}}}({{\mathit \mu}}$ = 10 GeV) = $3.609$ $\pm0.025$ GeV and ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from a four-loop sum-rule computation of the cross-section for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons in the bottom threshold region.
29  ABDALLAH 2006D determine ${\mathit m}_{{{\mathit b}}}({{\mathit M}_{{Z}}}$) = $2.85$ $\pm0.32$ GeV from ${{\mathit Z}}$-decay three-jet events containing a ${{\mathit b}}$-quark.
30  BOUGHEZAL 2006 $\overline{\rm{}MS}$ scheme result comes from the first moment of the hadronic production cross-section to order ${{\mathit \alpha}_{{s}}^{3}}$.
31  BUCHMUELLER 2006 determine ${{\mathit m}_{{b}}}$ and ${{\mathit m}_{{c}}}$ by a global fit to inclusive ${{\mathit B}}$ decay spectra.
32  PINEDA 2006 $\overline{\rm{}MS}$ scheme result comes from a partial NNLL evaluation (complete at order ${{\mathit \alpha}_{{s}}^{2}}$ (NNLO)) of sum rules of the bottom production cross-section in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation.
33  GRAY 2005 determines ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from a lattice computation of the ${{\mathit \Upsilon}}$ spectrum. The simulations have 2+1 dynamical light flavors. The ${{\mathit b}}$ quark is implemented using NRQCD.
34  AUBERT 2004X obtain ${\mathit m}_{{{\mathit b}}}$ from a fit to the hadron mass and lepton energy distributions in semileptonic ${{\mathit B}}$ decay. The paper quotes values in the kinetic scheme. The $\overline{\rm{}MS}$ value has been provided by the BABAR collaboration.
35  BAUER 2004 determine ${\mathit m}_{{{\mathit b}}}$, ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}−{\mathit m}_{{{\mathit c}}}$ by a global fit to inclusive ${{\mathit B}}$ decay spectra.
36  HOANG 2004 determines ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from moments at order ${{\mathit \alpha}_{{s}}^{2}}$ of the bottom production cross-section in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ annihilation.
37  MCNEILE 2004 use lattice QCD with dynamical light quarks and a static heavy quark to compute the masses of heavy-light mesons.
38  BAUER 2003 determine the b quark mass by a global fit to ${{\mathit B}}$ decay observables. The experimental data includes lepton energy and hadron invariant mass moments in semileptonic ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ decay, and the inclusive photon spectrum in ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{s}}}{{\mathit \gamma}}$ decay. The theoretical expressions used are of order 1/m${}^{3}$, and $\alpha {}^{2}_{s}\beta _{0}$.
39  BORDES 2003 determines m$_{b}$ using QCD finite energy sum rules to order $\alpha {}^{2}_{s}$.
40  CORCELLA 2003 determines ${{\overline{\mathit m}}_{{b}}}$ using sum rules computed to order $\alpha {}^{2}_{s}$. Includes charm quark mass effects.
41  DEDIVITIIS 2003 use a quenched lattice computation of heavy-heavy and heavy-light meson masses.
42  EIDEMULLER 2003 determines ${{\overline{\mathit m}}_{{b}}}$ and ${{\overline{\mathit m}}_{{c}}}$ using QCD sum rules.
43  ERLER 2003 determines ${{\overline{\mathit m}}_{{b}}}$ and ${{\overline{\mathit m}}_{{c}}}$ using QCD sum rules. Includes recent BES data.
44  MAHMOOD 2003 determines ${{\mathit m}}{}^{1S}_{b}$ by a fit to the lepton energy moments in ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ decay. The theoretical expressions used are of order 1/m${}^{3}$ and $\alpha {}^{2}_{s}\beta _{0}$. We have converted their result to the $\overline{\rm{}MS}$ scheme.
45  BRAMBILLA 2002 determine ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from a computation of the ${{\mathit \Upsilon}{(1S)}}$ mass to order ${{\mathit \alpha}_{{s}}^{4}}$, including finite ${{\mathit m}_{{c}}}$ corrections.
46  PENIN 2002 determines ${{\overline{\mathit m}}_{{b}}}$ from the spectrum of the ${{\mathit \Upsilon}}$ system.

           ${\mathit {\mathit b}}$-QUARK $\overline{\rm{}MS}$ MASS (GeV)
  References:
KIYO 2016
PL B752 122 Determination of ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit b}}}$ from Quarkonium $1S{}^{}{}^{}$ Energy Levels in Perturbative QCD
ALBERTI 2015
PRL 114 061802 Precision Determination of the Cabibbo-Kobayashi-Maskawa Element ${\it V}_{\it cb}$
BENEKE 2015
NP B891 42 The Bottom-Quark Mass from Non-Relativistic Sum Rules at NNNLO
DEHNADI 2015
JHEP 1508 155 Bottom and Charm Mass Determinations with a Convergence Test
ABRAMOWICZ 2014A
JHEP 1409 127 Measurement of Beauty and Charm Production in Deep Inelastic Scattering at HERA and Measurement of the Beauty-Quark Mass
AYALA 2014A
JHEP 1409 045 The Bottom Quark Mass from the ${{\mathit \Upsilon}{(1S)}}$ System at NNNLO
BERNARDONI 2014
PL B730 171 The ${\mathit {\mathit b}}$-Quark Mass from non-Perturbative $\mathit N_{f}$ = 2 Heavy Quark Effective Theory at (1/${\mathit m}_{{{\mathit h}}}$)
PENIN 2014
JHEP 1404 120 Bottom Quark Mass from ${{\mathit \Upsilon}}$ Sum Rules to (${{\mathit \alpha}_{{s}}^{3}}$)
LEE 2013O
PR D87 074018 Mass of the ${\mathit {\mathit b}}$ Quark from Lattice NRQCD and Lattice Perturbation Theory
LUCHA 2013
PR D88 056011 Accurate Bottom-Quark Mass from Borel QCD Sum Rules for $\mathit f_{{{\mathit B}}}$ and $\mathit f_{{{\mathit B}_{{s}}}}$
NARISON 2013
PL B718 1321 A Fresh Look into ${{\overline{\mathit m}}_{{c,b}}}({{\overline{\mathit m}}_{{c,b}}}$) and Precise ${{\mathit f}}_{{{\mathit D}}_{(s)},{{\mathit B}}_{(s)}}$ from Heavy$−$Light QCD Spectral Sum Rules
NARISON 2013A
PL B721 269 Revisiting ${{\mathit f}_{{B}}}$ and ${{\overline{\mathit m}}_{{b}}}({{\overline{\mathit m}}_{{b}}}$) from HQET Spectral Sum Rules
BODENSTEIN 2012
PR D85 034003 Bottom-Quark Mass from Finite Energy QCD Sum Rules
DIMOPOULOS 2012
JHEP 1201 046 Lattice QCD Determination of ${{\mathit m}_{{b}}}$, ${{\mathit f}_{{B}}}$ and ${{\mathit f}_{{Bs}}}$ with Twisted Mass Wilson Fermions
HOANG 2012
JHEP 1210 188 Renormalization Group Improved Bottom Mass from $\Upsilon $ Sum Rules at NNLL Order
NARISON 2012
PL B707 259 Gluon Condensates and m$_{b}$ (m$_{b}$ ) from QCD-Exponential Sum Rules at Higher Orders
NARISON 2012A
PL B706 412 Gluon Condensates and Precise ${{\overline{\mathit m}}_{{c,b}}}$ from QCD-Moments and their Ratios to Order $\mathit \alpha {}^{3}_{s}$ and $<\mathit G{}^{4}>$
LASCHKA 2011
PR D83 094002 Quark-Antiquark Potential to Order 1/${{\mathit m}}$ and Heavy Quark Masses
AUBERT 2010A
PR D81 032003 Measurement and Interpretation of Moments in Inclusive Semileptonic Decays ${{\overline{\mathit B}}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}}$
MCNEILE 2010
PR D82 034512 High-Precision ${\mathit {\mathit c}}$ and ${\mathit {\mathit b}}$ Masses, and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD
NARISON 2010
PL B693 559 Gluon Condensates and ${\mathit {\mathit c}}$, ${\mathit {\mathit b}}$ Quark Masses from Quarkonia Ratios of Moments
CHETYRKIN 2009
PR D80 074010 Charm and Bottom Quark Masses: An Update
ABDALLAH 2008D
EPJ C55 525 Study of ${\mathit {\mathit b}}$-Quark Mass Effects in Multijet Topologies with the DELPHI Detector at LEP
GUAZZINI 2008
JHEP 0801 076 Precision for $\mathit B$-Meson Matrix Elements
SCHWANDA 2008
PR D78 032016 Measurement of the Moments of the Photon Energy Spectrum in ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{s}}}{{\mathit \gamma}}$ Decays and Determination of $\vert {\it V}_{\it cb}\vert $ and ${\mathit m}_{{{\mathit b}}}$ at Belle
DELLA-MORTE 2007
JHEP 0701 007 Heavy Quark Effective Theory Computation of the Mass of the Bottom Quark
KUHN 2007
NP B778 192 Heavy Quark Masses from Sum Rules in Four-Loop Approximation
ABDALLAH 2006D
EPJ C46 569 Determination of the ${\mathit {\mathit b}}$ Quark Mass at the $\mathit M_{Z}$ Scale with the DELPHI Detector at LEP
BOUGHEZAL 2006
PR D74 074006 Charm- and Bottom-Quark Masses from Perturbative QCD
BUCHMUELLER 2006
PR D73 073008 Fit to Moments of Inclusive ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\overline{\mathit \nu}}}$ and ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{s}}}{{\mathit \gamma}}$ Decay Distributions using Heavy Quark Expansions in the Kinetic Scheme
PINEDA 2006
PR D73 111501 Renormalization-Group Improved Sum Rule Analysis for the Bottom-Quark Mass
GRAY 2005
PR D72 094507 Upsilon Spectrum and $\mathit m_{b}$ from Full Lattice QCD
AUBERT 2004X
PRL 93 011803 Determination of the Branching Fraction for ${{\mathit B}}$ $\rightarrow$ ${{\mathit X}_{{c}}}{{\mathit \ell}}{{\mathit \nu}}$ Decays and of $\vert {{\mathit V}_{{cb}}}\vert $ from Hadronic-Mass and Lepton-Energy Moments
BAUER 2004
PR D70 094017 Global Analysis of Inclusive ${{\mathit B}}$ Decays
HOANG 2004
PL B594 127 $\overline{\rm{}MS}$ Charm Mass from Charmonium Sum Rules with Contour Improvement
MCNEILE 2004
PL B600 77 An Unquenched Lattice QCD Calculation of the Mass of the bottom Quark
BAUER 2003
PR D67 054012 ${{\mathit B}}$ Decay Shape Variables and the Precision Determination of |$\mathit V_{cb}$| and $\mathit m_{b}$
BORDES 2003
PL B562 81 Bottom Quark Mass QCD Duality
CORCELLA 2003
PL B554 133 Uncertainties in the $\overline{\rm{}MS}$ Bottom Quark Mass from Relativistic Sum Rules
DEDIVITIIS 2003
NP B675 309 Heavy Quark Masses in the Continuum Limit of Quenched Lattice QCD
EIDEMULLER 2003
PR D67 113002 QCD Moment Sum Rules for Coulomb Systems: the Charm and Bottom Quark Masses
ERLER 2003
PL B558 125 Precision Determination of Heavy Quark Masses and the Strong Coupling Constant
MAHMOOD 2003
PR D67 072001 Measurement of Lepton Momentum Momentsin the Decay ${{\overline{\mathit B}}}$ $\rightarrow$ ${{\mathit X}}{{\mathit \ell}}{{\overline{\mathit \nu}}}$ and Determination of Heavy Quark Expansion Parameters and |$\mathit V_{cb}$|
BRAMBILLA 2002
PR D65 034001 Quarkonium Spectroscopy and Perturbative QCD: Massive Quark-Loop Effects
PENIN 2002
PL B538 335 Heavy Quarkonium Spectrum at $\mathit O(\alpha {}^{5}_{s}$ $\mathit m_{q}$) and Bottom/Top Quark Mass Determination
BENEKE 2016
PoS RADCOR2015 035 NNNLO Determination of the Bottom-Quark Mass from non-Relativistic Sum Rules