OTHER LIGHT QUARK MASS RATIOS

${\mathit m}_{{{\mathit s}}}/{\mathit m}_{{{\mathit d}}}$ MASS RATIO

INSPIRE   JSON  (beta) PDGID:
Q123MR1
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ \text{17 - 22}}$ OUR EVALUATION
$20.0$ 1
GAO
1997
THEO
$18.9$ $\pm0.8$ 2
LEUTWYLER
1996
THEO Compilation
$21$ 3
DONOGHUE
1992
THEO
$18$ 4
GERARD
1990
THEO
$18\text{ to }23 $ 5
LEUTWYLER
1990B
THEO
1  GAO 1997 uses electromagnetic mass splittings of light mesons.
2  LEUTWYLER 1996 uses a combined fit to ${{\mathit \eta}}$ $\rightarrow$ 3 ${{\mathit \pi}}$ and ${{\mathit \psi}^{\,'}}$ $\rightarrow$ ${{\mathit J / \psi}}$ (${{\mathit \pi}},{{\mathit \eta}}$) decay rates, and the electromagnetic mass differences of the ${{\mathit \pi}}$ and ${{\mathit K}}$.
3  DONOGHUE 1992 result is from a combined analysis of meson masses, ${{\mathit \eta}}$ $\rightarrow$ 3 ${{\mathit \pi}}$ using second-order chiral perturbation theory including nonanalytic terms, and (${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}})/({{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$).
4  GERARD 1990 uses large $\mathit N$ and ${{\mathit \eta}}-{{\mathit \eta}^{\,'}}$ mixing.
5  LEUTWYLER 1990B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine $\mathit L_{7}$.
References