${\boldsymbol {\boldsymbol s}}$-QUARK MASS INSPIRE search

See the comment for the ${{\mathit u}}$ quark above.

We have normalized the $\overline{\rm{}MS}$ masses at a renormalization scale of $\mu $ = 2 GeV. Results quoted in the literature at $\mu $ = 1 GeV have been rescaled by dividing by $1.35$.
VALUE (MeV) DOCUMENT ID TECN
$\bf{ 93 {}^{+11}_{-5}}$ OUR EVALUATION
$92.47$ $\pm0.69$ 1
BAZAVOV
2018
LATT
$87.6$ $\pm6.0$ 2
ANANTHANARAYA..
2016
THEO
$93.6$ $\pm0.8$ 3
CHAKRABORTY
2015
LATT
$99.6$ $\pm4.3$ 4
CARRASCO
2014
LATT
$94.4$ $\pm2.3$ 5
ARTHUR
2013
LATT
$94$ $\pm9$ 6
BODENSTEIN
2013
THEO
$102$ $\pm3$ $\pm1$ 7
FRITZSCH
2012
LATT
$95.5$ $\pm1.1$ $\pm1.5$ 8
DURR
2011
LATT
• • • We do not use the following data for averages, fits, limits, etc. • • •
$96.2$ $\pm2.7$ 9
AOKI
2011A
LATT
$95$ $\pm6$ 10
BLOSSIER
2010
LATT
$97.6$ $\pm2.9$ $\pm5.5$ 11
BLUM
2010
LATT
$92.4$ $\pm1.5$ 12
DAVIES
2010
LATT
$92.2$ $\pm1.3$ 12
MCNEILE
2010
LATT
$107.3$ $\pm11.7$ 13
ALLTON
2008
LATT
$105$ $\pm3$ $\pm9$ 14
BLOSSIER
2008
LATT
$102$ $\pm8$ 15
DOMINGUEZ
2008A
THEO
$90.1$ ${}^{+17.2}_{-6.1}$ 16
ISHIKAWA
2008
LATT
$105.6$ $\pm1.2$ 17
NAKAMURA
2008
LATT
$119.5$ $\pm9.3$ 18
BLUM
2007
LATT
$105$ $\pm6$ $\pm7$ 19
CHETYRKIN
2006
THEO
$111$ $\pm6$ $\pm10$ 20
GOCKELER
2006
LATT
$119$ $\pm5$ $\pm8$ 21
GOCKELER
2006A
LATT
$92$ $\pm9$ 22
JAMIN
2006
THEO
$87$ $\pm6$ 23
MASON
2006
LATT
$104$ $\pm15$ 24
NARISON
2006
THEO
${}\geq{}\text{ 71 }\pm4, {}\leq{}\text{ 151 }\pm14$ 25
NARISON
2006
THEO
$96$ ${}^{+5}_{-3}$ ${}^{+16}_{-18}$ 26
BAIKOV
2005
THEO
$81$ $\pm22$ 27
GAMIZ
2005
THEO
$125$ $\pm28$ 28
GORBUNOV
2005
THEO
$93$ $\pm32$ 29
NARISON
2005
THEO
$76$ $\pm8$ 30
AUBIN
2004
LATT
$116$ $\pm6$ $\pm0.65$ 31
AOKI
2003
LATT
$84.5$ ${}^{+12}_{-1.7}$ 32
AOKI
2003B
LATT
$106$ $\pm2$ $\pm8$ 33
BECIREVIC
2003
LATT
$92$ $\pm9$ $\pm16$ 34
CHIU
2003
LATT
$117$ $\pm17$ 35
GAMIZ
2003
THEO
$103$ $\pm17$ 36
GAMIZ
2003
THEO
1  BAZAVOV 2018 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
2  ANANTHANARAYAN 2016 determine ${{\overline{\mathit m}}_{{s}}}$(2 GeV) = $106.70$ $\pm9.36$ MeV and $74.47$ $\pm7.77$ MeV from fits to ALEPH and OPAL ${{\mathit \tau}}$ decay data, respectively. We have used the weighted average of the two.
3  CHAKRABORTY 2015 is a lattice QCD computation that determines ${\mathit m}_{{{\mathit c}}}$ and ${\mathit m}_{{{\mathit c}}}/{\mathit m}_{{{\mathit s}}}$ using pseudoscalar mesons masses tuned on gluon field configurations with 2+1+1 dynamical flavors of HISQ quarks with ${{\mathit u}}/{{\mathit d}}$ masses down to the physical value.
4  CARRASCO 2014 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with ${{\mathit m}_{{u}}}$ = ${{\mathit m}_{{d}}}{}\not=$ ${{\mathit m}_{{s}}}{}\not=$ ${{\mathit m}_{{c}}}$. The ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quark masses are obtained separately by using the ${{\mathit K}}$ meson mass splittings and lattice results for the electromagnetic contributions.
5  ARTHUR 2013 is a lattice computation using 2+1 dynamical domain wall fermions. Masses at ${{\mathit \mu}}$ = 3 GeV have been converted to ${{\mathit \mu}}$ = 2 GeV using conversion factors given in their paper.
6  BODENSTEIN 2013 determines ${\mathit m}_{{{\mathit s}}}$ from QCD finite energy sum rules, and the perturbative computation of the pseudoscalar correlator to five-loop order.
7  FRITZSCH 2012 determine ${\mathit m}_{{{\mathit s}}}$ using a lattice computation with ${{\mathit N}_{{f}}}$ = 2 dynamical flavors.
8  DURR 2011 determine quark mass from a lattice computation of the meson spectrum using ${{\mathit N}_{{f}}}$ = 2 + 1 dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
9  AOKI 2011A determine quark masses from a lattice computation of the hadron spectrum using ${{\mathit N}_{{f}}}$ = 2 + 1 dynamical flavors of domain wall fermions.
10  BLOSSIER 2010 determines quark masses from a computation of the hadron spectrum using ${{\mathit N}_{{f}}}$=2 dynamical twisted-mass Wilson fermions.
11  BLUM 2010 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
12  DAVIES 2010 and MCNEILE 2010 determine ${{\overline{\mathit m}}_{{c}}}({{\mathit \mu}})/{{\overline{\mathit m}}_{{s}}}({{\mathit \mu}}$) = $11.85$ $\pm0.16$ using a lattice computation with ${{\mathit N}_{{f}}}$ = 2 + 1 dynamical fermions of the pseudoscalar meson masses. Mass ${\mathit m}_{{{\mathit s}}}$ is obtained from this using the value of ${\mathit m}_{{{\mathit c}}}$ from ALLISON 2008 or MCNEILE 2010 .
13  ALLTON 2008 use a lattice computation of the ${{\mathit \pi}}$, ${{\mathit K}}$, and ${{\mathit \Omega}}$ masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
14  BLOSSIER 2008 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
15  DOMINGUEZ 2008A make determination from QCD finite energy sum rules for the pseudoscalar two-point function computed to order $\alpha {}^{4}_{s}$.
16  ISHIKAWA 2008 use a lattice computation of the light meson spectrum with 2+1 dynamical flavors of $\cal O(\mathit a$) improved Wilson quarks, and one-loop perturbative renormalization.
17  NAKAMURA 2008 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
18  BLUM 2007 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
19  CHETYRKIN 2006 use QCD sum rules in the pseudoscalar channel to order ${{\mathit \alpha}_{{s}}^{4}}$.
20  GOCKELER 2006 use an unquenched lattice computation of the axial Ward Identity with ${{\mathit N}_{{f}}}$ = 2 dynamical light quark flavors, and non-perturbative renormalization, to obtain ${{\overline{\mathit m}}_{{s}}}$(2 GeV) = $111$ $\pm6$ $\pm4$ $\pm6$ MeV, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
21  GOCKELER 2006A use an unquenched lattice computation of the pseudoscalar meson masses with ${{\mathit N}_{{f}}}$ = 2 dynamical light quark flavors, and non-perturbative renormalization.
22  JAMIN 2006 determine ${{\overline{\mathit m}}_{{s}}}$(2 GeV) from the spectral function for the scalar ${{\mathit K}}{{\mathit \pi}}$ form factor.
23  MASON 2006 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate ${\mathit {\mathit u}}$ and ${\mathit {\mathit d}}$ quarks. Perturbative corrections were included at NNLO order.
24  NARISON 2006 uses sum rules for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons to order ${{\mathit \alpha}_{{s}}^{3}}$.
25  NARISON 2006 obtains the quoted range from positivity of the spectral functions.
26  BAIKOV 2005 determines ${{\overline{\mathit m}}_{{s}}}({{\mathit M}_{{\tau}}}$) = $100$ ${}^{+5}_{-3}{}^{+17}_{-19}$ from sum rules using the strange spectral function in ${{\mathit \tau}}$ decay. The computations were done to order ${{\mathit \alpha}_{{s}}^{3}}$, with an estimate of the ${{\mathit \alpha}_{{s}}^{4}}$ terms. We have converted the result to ${{\mathit \mu}}$ = 2 GeV.
27  GAMIZ 2005 determines ${{\overline{\mathit m}}_{{s}}}$(2 GeV) from sum rules using the strange spectral function in ${{\mathit \tau}}$ decay. The computations were done to order ${{\mathit \alpha}_{{s}}^{2}}$, with an estimate of the ${{\mathit \alpha}_{{s}}^{3}}$ terms.
28  GORBUNOV 2005 use hadronic tau decays to N3LO, including power corrections.
29  NARISON 2005 determines ${{\overline{\mathit m}}_{{s}}}$(2 GeV) from sum rules using the strange spectral function in ${{\mathit \tau}}$ decay. The computations were done to order ${{\mathit \alpha}_{{s}}^{3}}$.
30  AUBIN 2004 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
31  AOKI 2003 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory. Determines m$_{s}=113.8$ $\pm2.3$ ${}^{+5.8}_{-2.9}$ using ${{\mathit K}}$ mass as input and m$_{s}=142.3$ $\pm5.8$ ${}^{+22}_{-0}$ using ${{\mathit \phi}}$ mass as input. We have performed a weighted average of these values.
32  AOKI 2003B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\cal O(\mathit a$) improved Wilson action.
33  BECIREVIC 2003 perform quenched lattice computation using the vector and axial Ward identities. Uses $\cal O(\mathit a$) improved Wilson action and nonperturbative renormalization. They also quote ${{\overline{\mathit m}}}$/m$_{s}=24.3$ $\pm0.2$ $\pm0.6$.
34  CHIU 2003 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
35  GAMIZ 2003 determines ${\mathit m}_{{{\mathit s}}}$ from SU(3) breaking in the ${{\mathit \tau}}~$hadronic width. The value of $\mathit V_{ {{\mathit u}} {{\mathit s}} }$ is chosen to satisfy CKM unitarity.
36  GAMIZ 2003 determines ${\mathit m}_{{{\mathit s}}}$ from SU(3) breaking in the ${{\mathit \tau}}~$hadronic width. The value of $\mathit V_{ {{\mathit u}} {{\mathit s}} }$ is taken from the PDG.

           ${\mathit {\mathit s}}$-QUARK MASS (MeV)
  References:
BAZAVOV 2018
PR D98 054517 Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD
ANANTHANARAYAN 2016
PR D94 116014 Optimal Renormalization and the Extraction of the Strange Quark Mass from Moments of the ${{\mathit \tau}}$-Decay Spectral Function
CHAKRABORTY 2015
PR D91 054508 High-Precision Quark Masses and QCD Coupling from ${{\mathit n}_{{f}}}$ = 4 Lattice QCD
CARRASCO 2014
NP B887 19 Up, Down, Strange and Charm Quark Masses with $\mathit N_{f}$ = 2+1+1 Twisted Mass Lattice QCD
ARTHUR 2013
PR D87 094514 Domain Wall QCD with Near-Physical Pions
BODENSTEIN 2013
JHEP 1307 138 Strange Quark Mass from Sum Rules with Improved Perturbative QCD Convergence
FRITZSCH 2012
NP B865 397 The Strange Quark Mass and Lambda Parameter of Two Flavor QCD
AOKI 2011A
PR D83 074508 Continuum Limit Physics from 2+1 Flavor Domain Wall QCD
DURR 2011
PL B701 265 Lattice QCD at the Physical Point: Light Quark Masses
BLOSSIER 2010
PR D82 114513 Average up/down, strange, and charm Quark Masses with $\mathit N_{f}$=2 Twisted-Mass Lattice QCD
BLUM 2010
PR D82 094508 Electromagnetic Mass Splittings of the Low Lying Hadrons and Quark Masses from 2+1 Flavor Lattice QCD+QED
DAVIES 2010
PRL 104 132003 Precise Charm to Strange Mass Ratio and Light Quark Masses from Full Lattice QCD
MCNEILE 2010
PR D82 034512 High-Precision ${\mathit {\mathit c}}$ and ${\mathit {\mathit b}}$ Masses, and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD
ALLTON 2008
PR D78 114509 Physical Results from 2+1 Flavor Domain Wall QCD and SU(2) Chiral Perturbation Theory
BLOSSIER 2008
JHEP 0804 020 Light Quark Masses and Pseudoscalar Decay Constants from $\mathit N_{f}$ = 2 Lattice QCD with Twisted Mass Fermions
DOMINGUEZ 2008A
JHEP 0805 020 Strange Quark Mass from Finite Energy QCD Sum Rules to Five Loops
ISHIKAWA 2008
PR D78 011502 Light Quark Masses from Unquenched Lattice QCD
NAKAMURA 2008
PR D78 034502 Precise Determination of $\mathit B_{K}$ and Light Quark Masses in Quenched Domain-wall QCD
BLUM 2007
PR D76 114508 Determination of Light Quark Masses from the Electromagnetic Splitting of Pseudoscalar Meson Masses Computed with Two Flavors of Domain Wall Fermions
CHETYRKIN 2006
EPJ C46 721 Strange Quark Mass from Pseudoscalar Sum Rule with $\mathit O({{\mathit \alpha}}{}^{4}_{s}$) Accuracy
GOCKELER 2006A
PL B639 307 Determination of Light and Strange Quark Masses from Two-Flavour Dynamical Lattice QCD
GOCKELER 2006
PR D73 054508 Estimating the Unquenched Strange Quark Mass from the Lattice Axial Ward Identity
JAMIN 2006
PR D74 074009 Scalar ${{\mathit K}}{{\mathit \pi}}$ Form Factor and Light-Quark Masses
MASON 2006
PR D73 114501 High-Precision Determination of the Light-Quark Masses from Realistic Lattice QCD
NARISON 2006
PR D74 034013 Strange Quark Mass from ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Revisited and Present Status of Light Quark Masses
BAIKOV 2005
PRL 95 012003 Strange-Quark Mass from Tau-Lepton Decays with $\mathit O({{\mathit \alpha}}{}^{3}_{s}$) Accuracy
GAMIZ 2005
PRL 94 011803 $\mathit V_{us}$ and ${\mathit m}_{{{\mathit s}}}$ from Hadronic ${{\mathit \tau}}$ Decays
GORBUNOV 2005
PR D71 013002 Disentangling Perturbative and Power Corrections in Precision tau Decay Analysis
NARISON 2005
PL B626 101 Strange Quark, Tachyonic Gluon Masses and $\vert \mathit V_{us}\vert $ from Hadronic ${{\mathit \tau}}$ Decays
AUBIN 2004
PR D70 031504 First Determination of the Strange and Light Quark Masses from Full Lattice QCD
AOKI 2003
PR D67 034503 Light Hadron Spectrum and Quark Masses from Quenched Lattice QCD
AOKI 2003B
PR D68 054502 Light Hadron Spectroscopy with Two Flavors of $\mathit O(a)$-improved Dynamical Quarks
BECIREVIC 2003
PL B558 69 Continuum Determination of Light Quark Masses from Quenched Lattice QCD
CHIU 2003
NP B673 217 Light Quark Masses, Chiral Condensate and Quark Gluon Condensate in Quenched Lattice QCD with Exact Chiral Symmetry
GAMIZ 2003
JHEP 0301 060 Determination of ${\mathit m}_{{{\mathit s}}}$ and $\vert \mathit V_{us}\vert $ from Hadronic ${{\mathit \tau}}$ Decays