LIMIT ON ${{\boldsymbol \mu}^{-}}$ $\rightarrow$ ${{\boldsymbol e}^{+}}$ CONVERSION
Forbidden by total lepton number conservation.
${\boldsymbol \sigma (}$ ${{\boldsymbol \mu}^{-}}$ ${}^{}\mathrm {Ti}$ $\rightarrow$ ${{\boldsymbol e}^{+}}{}^{}\mathrm {Ca}{)}$ / ${\boldsymbol \sigma (}$ ${{\boldsymbol \mu}^{-}}$ ${}^{}\mathrm {Ti}$ $\rightarrow$ capture${)}$
INSPIRE search
$\bf{<3.6 \times 10^{-11}}$ |
90 |
1 |
1, 2 |
|
SPEC |
- |
• • • We do not use the following data for averages, fits, limits, etc. • • • |
$<1.7 \times 10^{-12}$ |
90 |
1 |
3, 2 |
|
SPEC |
- |
$<4.3 \times 10^{-12}$ |
90 |
|
3 |
|
SPEC |
|
$<8.9 \times 10^{-11}$ |
90 |
|
1 |
|
SPEC |
|
$<1.7 \times 10^{-10}$ |
90 |
|
4 |
|
TPC |
|
1
This limit assumes a giant resonance excitation of the daughter ${}^{}\mathrm {Ca}$ nucleus (mean energy and width both 20 MeV).
|
2
KAULARD 1998 obtained these same limits using the unified classical analysis of FELDMAN 1998 .
|
3
This limit assumes the daughter ${}^{}\mathrm {Ca}$ nucleus is left in the ground state. However, the probability of this is unknown.
|
4
Assuming a giant-resonance-excitation model.
|
|
Conservation Laws: |
|
References: |
| PL B422 334 |
Improved Limit on the Branching Ratio of ${{\mathit \mu}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}$ Conversion on Titanium |
| PL B317 631 |
Test of Lepton-Flavour Conservation in ${{\mathit \mu}}$ $\rightarrow$ ${{\mathit e}}$ Conversion on Titanium |
| PR D38 2102 |
Search for Muon Electron and Muon Positron Conversion |
| PR D57 3873 |
A Unified Approach to the Classical Statistical Analysis of Small Signals |
|