CONCENTRATION OF STABLE PARTICLES IN MATTER

Concentration of Heavy Stable Particles Bound to Nuclei

INSPIRE   JSON  (beta) PDGID:
S015CNM
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$ < 2 \times 10^{-17}/\text{nucleon }$ 95 1
AFEK
2021
millicharged particle search
$<1.2 \times 10^{-11}$ 95 2
JAVORSEK
2001
SPEC Au, $\mathit M$= 3 GeV
$<6.9 \times 10^{-10}$ 95 2
JAVORSEK
2001
SPEC Au, $\mathit M$= 144 GeV
$<1 \times 10^{-11}$ 95 3
JAVORSEK
2001B
SPEC Au, $\mathit M$= 188 GeV
$<1 \times 10^{-8}$ 95 3
JAVORSEK
2001B
SPEC Au, $\mathit M$= 1669 GeV
$<6 \times 10^{-9}$ 95 3
JAVORSEK
2001B
SPEC Fe, $\mathit M$= 188 GeV
$<1 \times 10^{-8}$ 95 3
JAVORSEK
2001B
SPEC Fe, $\mathit M$= 647 GeV
$<4 \times 10^{-20}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {C}$, $\mathit M$ = 100${\mathit m}_{{{\mathit p}}}$
$<8 \times 10^{-20}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {C}$, $\mathit M$ = 1000${\mathit m}_{{{\mathit p}}}$
$<2 \times 10^{-16}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {C}$, $\mathit M$ = 10000${\mathit m}_{{{\mathit p}}}$
$<6 \times 10^{-13}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {Li}$, $\mathit M$ = 1000${\mathit m}_{{{\mathit p}}}$
$<1 \times 10^{-11}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {Be}$, $\mathit M$ = 1000${\mathit m}_{{{\mathit p}}}$
$<6 \times 10^{-14}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {B}$, $\mathit M$ = 1000${\mathit m}_{{{\mathit p}}}$
$<4 \times 10^{-17}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {O}$, $\mathit M$ = 1000${\mathit m}_{{{\mathit p}}}$
$<4 \times 10^{-15}$ 90 4
HEMMICK
1990
SPEC ${}^{}\mathrm {F}$, $\mathit M$ = 1000${\mathit m}_{{{\mathit p}}}$
$<1.5 \times 10^{-13}/\text{nucleon }$ 68 5
NORMAN
1989
SPEC ${}^{206}\mathrm {Pb}$ ${{\mathit X}^{-}}$
$<1.2 \times 10^{-12}/\text{nucleon }$ 68 5
NORMAN
1987
SPEC ${{\mathit X}^{-}}$
1  AFEK 2021 search for millicharged particles bound to matter using an optomechanical device. No signal was observed. Limits placed in the abundance vs. charge plane (Fig. 3). This is translated to the mass versus charge plane by requiring bound states to be stable.
2  JAVORSEK 2001 search for (neutral) SIMPs (strongly interacting massive particles) bound to Au nuclei. Here $\mathit M$ is the effective SIMP mass.
3  JAVORSEK 2001B search for (neutral) SIMPs (strongly interacting massive particles) bound to Au and Fe nuclei from various origins with exposures on the earth's surface, in a satellite, heavy ion collisions, etc. Here $\mathit M$ is the mass of the anomalous nucleus. See also JAVORSEK 2002.
4  See HEMMICK 1990 Fig.$~$7 for other masses $100 - 10000~{\mathit m}_{{{\mathit p}}}$.
5  Bound valid up to ${\mathit m}_{{{\mathit X}^{-}}}$ $\sim{}$ 100 TeV.
References