${{\mathit n}}$ $\rightarrow$ ${{\mathit p}}{{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{e}}}$ DECAY PARAMETERS

See the above “Note on Baryon Decay Parameters.” For discussions of recent results, see the references cited at the beginning of the section on the neutron mean life. For discussions of the values of the weak coupling constants ${\mathit g}_{{{\mathit A}}}$ and ${\mathit g}_{{{\mathit V}}}$ obtained using the neutron lifetime and asymmetry parameter$~\mathit A$, comparisons with other methods of obtaining these constants, and implications for particle physics and for astrophysics, see DUBBERS 1991 and WOOLCOCK 1991 . For tests of the $\mathit V−\mathit A$ theory of neutron decay, see EROZOLIMSKII 1991B, MOSTOVOI 1996 , NICO 2005 , SEVERIJNS 2006 , and ABELE 2008 .

${{\mathit e}}-{{\overline{\mathit \nu}}_{{e}}}$ ANGULAR CORRELATION COEFFICIENT $\mathit a$

INSPIRE   PDGID:
S017BNC
For a review of past experiments and plans for future measurements of the $\mathit a$ parameter, see WIETFELDT 2005 . In the Standard Model, $\mathit a$ is related to $\lambda {}\equiv\mathit g_{A}/\mathit g_{V}$ by $\mathit a$ = (1 $−$ $\lambda {}^{2}$) $/$ (1 + 3$\lambda {}^{2}$); this assumes that $\mathit g_{A}$ and $\mathit g_{V}$ are real.
VALUE DOCUMENT ID TECN  COMMENT
$\bf{ -0.1049 \pm0.0013}$ OUR AVERAGE  Error includes scale factor of 1.8.
$-0.10782$ $\pm0.00124$ $\pm0.00133$ 1
HASSAN
2021
SPEC Proton recoil spectrum
$-0.10430$ $\pm0.00084$
BECK
2020
SPEC Proton recoil spectrum
$-0.1054$ $\pm0.0055$
BYRNE
2002
SPEC Proton recoil spectrum
$-0.1017$ $\pm0.0051$
STRATOWA
1978
CNTR Proton recoil spectrum
$-0.091$ $\pm0.039$
GRIGOREV
1968
SPEC Proton recoil spectrum
• • We do not use the following data for averages, fits, limits, etc. • •
$-0.1090$ $\pm0.0030$ $\pm0.0028$ 2
DARIUS
2017
SPEC Cold ${{\mathit n}}$, unpolarized
$-0.1045$ $\pm0.0014$ 3
MOSTOVOI
2001
CNTR Inferred
1  The result of HASSAN 2021 includes the data of DARIUS 2017 , and thus supersedes those entries. HASSAN 2021 uses the asymmetry in time-of-flight between the beta electron and recoil proton in delayed coincidence.
2  DARIUS 2017 exploits a "wishbone" correlation, where the ${{\mathit p}}$ time of flight is correlated with the momentum of the electron in delayed coincidence. Data is included in HASSAN 2021 .
3  MOSTOVOI 2001 calculates this from its measurement of $\lambda =\mathit g_{\mathit A}/\mathit g_{\mathit V}$ above.
References:
HASSAN 2021
PR C103 045502 Measurement of the neutron decay electron-antineutrino angular correlation by the aCORN experiment
BECK 2020
PR C101 055506 Improved determination of the $\beta$-$\overline{\nu}_e$ angular correlation coefficient $a$ in free neutron decay with the $aSPECT$ spectrometer
DARIUS 2017
PRL 119 042502 Measurement of the Electron-Antineutrino Angular Correlation in Neutron $\beta $ Decay
BYRNE 2002
JP G28 1325 Determination of the ${{\overline{\mathit \nu}}_{{e}}}$ Angular Correlation Coefficient a$_{0}$ and the Parameter $\vert \Lambda \vert $ = $\vert \mathit G_{A}/G_{V}\vert $ in Free Neutron $\beta $-Decay from Measurements of the Integrated Energy Spectrum of Recoil Protons Stored in an Ion Trap
MOSTOVOI 2001
PAN 64 1955 Experimental Value of $\mathit G_{a}/G_{v}$ from a Measurement of Both $\mathit P$-odd Correlations in Free-neutron Decay
STRATOWA 1978
PR D18 3970 Ratio $\vert \mathit g_{A}$/g$_{V}\vert $ Derived from the Proton Spectrum in Free Neutron Decay
GRIGOREV 1968
SJNP 6 239 Measurement of Angular (${{\mathit e}}$, ${{\overline{\mathit \nu}}_{{e}}}$) Correlation at Free Neutron Decay