${{\boldsymbol n}}$ ELECTRIC POLARIZABILITY ${{\boldsymbol \alpha}_{{n}}}$ INSPIRE search

Following is the electric polarizability $\alpha _{\mathit n}$ defined in terms of the induced electric dipole moment by $\mathbf {D}$ = 4$\pi \epsilon _{0}\alpha _{\mathit n}\mathbf {E}$. For a review, see SCHMIEDMAYER 1989 .

For very complete reviews of the polarizability of the nucleon and Compton scattering, see SCHUMACHER 2005 and GRIESSHAMMER 2012 .
VALUE ($ 10^{-4} $ fm${}^{3}$) DOCUMENT ID TECN  COMMENT
$\bf{ 11.8 \pm1.1}$ OUR AVERAGE
$11.55$ $\pm1.25$ $\pm0.8$
MYERS
2014
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit d}}$
$12.5$ $\pm1.8$ ${}^{+1.6}_{-1.3}$ 1
KOSSERT
2003
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit p}}{{\mathit n}}$
$12.0$ $\pm1.5$ $\pm2.0$
SCHMIEDMAYER
1991
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$ transmission
$10.7$ ${}^{+3.3}_{-10.7}$
ROSE
1990B
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit n}}{{\mathit p}}$
• • • We do not use the following data for averages, fits, limits, etc. • • •
$8.8$ $\pm2.4$ $\pm3.0$ 2
LUNDIN
2003
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit d}}$
$13.6$ 3
KOLB
2000
CNTR ${{\mathit \gamma}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit n}}{{\mathit p}}$
$0.0$ $\pm5.0$ 4
KOESTER
1995
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$, ${{\mathit n}}{}^{}\mathrm {Bi}$ transmission
$11.7$ ${}^{+4.3}_{-11.7}$
ROSE
1990
CNTR See ROSE 1990B
$8$ $\pm10$
KOESTER
1988
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$, ${{\mathit n}}{}^{}\mathrm {Bi}$ transmission
$12$ $\pm10$
SCHMIEDMAYER
1988
CNTR ${{\mathit n}}{}^{}\mathrm {Pb}$, ${{\mathit n}}{}^{}\mathrm {C}$ transmission
1  KOSSERT 2003 gets $\alpha _{{{\mathit n}}}−\beta _{{{\mathit n}}}$ =($9.8$ $\pm3.6$ ${}^{+2.1}_{-1.1}\pm2.2){\times }10^{-4}~$fm${}^{3}$, and uses $\alpha _{{{\mathit n}}}+\beta _{{{\mathit n}}}$ = ($15.2$ $\pm0.5$) $ \times 10^{-4}~$fm${}^{3}$ from LEVCHUK 2000 . Thus the errors on $\alpha _{{{\mathit n}}}$ and $\beta _{{{\mathit n}}}$ are anti-correlated.
2  LUNDIN 2003 measures $\alpha _{\mathit N}−\beta _{\mathit N}$ = ($6.4$ $\pm2.4$) $ \times 10^{-4}$ fm${}^{3}$ and uses accurate values for $\alpha _{{{\mathit p}}}$ and $\alpha _{{{\mathit p}}}$ and a precise sum-rule result for $\alpha _{{{\mathit n}}}+\beta _{{{\mathit n}}}$. The second error is a model uncertainty, and errors on $\alpha _{{{\mathit n}}}$ and $\beta _{{{\mathit n}}}$ are anticorrelated. The data from this paper aer included in the analysis of MYERS 2014 .
3  KOLB 2000 obtains this value with a lower limit of $7.6 \times 10^{-4}~$fm${}^{3}$ but no upper limit from this experiment alone. Combined with results of ROSE 1990 , the 1-$\sigma $ range is ($7.6 - 14.0){\times }10^{-4}~$fm${}^{3}$.
4  KOESTER 1995 uses natural Pb and the isotopes 208, 207, and 206. See this paper for a discussion of methods used by various groups to extract $\alpha _{{{\mathit n}}}$ from data.
  References:
MYERS 2014
PRL 113 262506 Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities
KOSSERT 2003
EPJ A16 259 Quasifree Compton Scattering and the Polarizabilities of the Neutron
LUNDIN 2003
PRL 90 192501 Compton Scattering from the Deuteron and Neutron Polarizabilities
KOLB 2000
PRL 85 1388 Quasifree Compton Scattering from the Deuteron and Nucleon Polarizabilities
KOESTER 1995
PR C51 3363 Neutrino Electron Scattering Length and Electric Polarizability of the Neutron Derived from Cross Sections of Bismuth and of Lead and its Isotopes
SCHMIEDMAYER 1991
PRL 66 1015 Measurement of the Electric Polarizability of the Neutron
ROSE 1990B
NP A514 621 Quasi-Free Compton Scattering by the Neutron
ROSE 1990
PL B234 460 Polarizability of the Neutron
KOESTER 1988
ZPHY A329 229 Experimental Study on the Electric Polarizability of the Neutron
SCHMIEDMAYER 1988
PRL 61 1065 Measurement of the Electric Polarizability of the Neutron