$
\text{<1.6E-3}
$
|
$\text{b}$
|
see note
|
|
$200$
|
${}^{32}\mathrm {S}--{}^{}\mathrm {Pb}$
|
0 |
1 |
|
PLAS |
$
\text{<6.2E-4}
$
|
$\text{b}$
|
see note
|
|
$\text{10.6}$
|
${}^{32}\mathrm {S}--{}^{}\mathrm {Pb}$
|
0 |
1 |
|
PLAS |
$
\text{<0.94E-4}
$
|
e
|
$\pm2$
|
$2 - 30$
|
$\text{88 - 94}$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
OPAL |
$
\text{<1.7E-4}
$
|
e
|
$\pm2$
|
$30 - 40$
|
$\text{88 - 94}$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
OPAL |
$
\text{<3.6E-4}
$
|
e
|
$\pm4$
|
$5 - 30$
|
$\text{88 - 94}$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
OPAL |
$
\text{<1.9E-4}
$
|
e
|
$\pm4$
|
$30 - 45$
|
$\text{88 - 94}$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
OPAL |
$
\text{<2.E-3}
$
|
e
|
$+1$
|
$5 - 40$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
2 |
|
ALEP |
$
\text{<6.E-4}
$
|
e
|
$+2$
|
$5 - 30$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
2 |
|
ALEP |
$
\text{<1.2E-3}
$
|
e
|
$+4$
|
$15 - 40$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
2 |
|
ALEP |
$
\text{<3.6E-4}
$
|
i
|
$+4$
|
$5.0 - 10.2$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
ALEP |
$
\text{<3.6E-4}
$
|
i
|
$+4$
|
$16.5 - 26.0$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
ALEP |
$
\text{<6.9E-4}
$
|
i
|
$+4$
|
$26.0 - 33.3$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
ALEP |
$
\text{<9.1E-4}
$
|
i
|
$+4$
|
$33.3 - 38.6$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
ALEP |
$
\text{<1.1E-3}
$
|
i
|
$+4$
|
$38.6 - 44.9$
|
$88 - 94$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
ALEP |
$
\text{<1.6E-4}
$
|
$\text{b}$
|
see note
|
|
$\text{see note}$
|
|
0 |
3 |
|
PLAS |
$
\text{}
$
|
b
|
4,5,7,8
|
|
$\text{2.1A}$
|
${}^{16}\mathrm {O}$
|
0,2,0,6 |
4 |
|
EMUL |
$
\text{<6.4E-5}
$
|
g
|
1
|
|
|
${{\mathit \nu}},{{\overline{\mathit \nu}}}$
|
1 |
5 |
|
CNTR |
$
\text{<3.7E-5}
$
|
g
|
2
|
|
|
${{\mathit \nu}},{{\overline{\mathit \nu}}}$
|
0 |
5 |
|
CNTR |
$
\text{<3.9E-5}
$
|
g
|
1
|
|
|
${{\mathit \nu}},{{\overline{\mathit \nu}}}$
|
1 |
6 |
|
CNTR |
$
\text{<2.8E-5}
$
|
g
|
2
|
|
|
${{\mathit \nu}},{{\overline{\mathit \nu}}}$
|
0 |
6 |
|
CNTR |
$
\text{<1.9E-4}
$
|
c
|
|
|
$\text{14.5A}$
|
${}^{28}\mathrm {Si}-$Pb
|
0 |
7 |
|
PLAS |
$
\text{<3.9E-4}
$
|
c
|
|
|
$\text{14.5A}$
|
${}^{28}\mathrm {Si}-$Cu
|
0 |
7 |
|
PLAS |
$
\text{<1.E-9}
$
|
c
|
$\pm1$,2,4
|
|
$\text{14.5A}$
|
${}^{16}\mathrm {O}-$Ar
|
0 |
|
|
MDRP |
$
\text{<5.1E-10}
$
|
c
|
$\pm1$,2,4
|
|
$\text{14.5A}$
|
${}^{16}\mathrm {O}-$Hg
|
0 |
|
|
MDRP |
$
\text{<8.1E-9}
$
|
c
|
$\pm1$,2,4
|
|
$\text{14.5A}$
|
Si$-$Hg
|
0 |
|
|
MDRP |
$
\text{<1.7E-6}
$
|
c
|
$\pm1$,2,4
|
|
$60$
|
${}^{16}\mathrm {O}-$Hg
|
0 |
|
|
MDRP |
$
\text{<3.5E-7}
$
|
c
|
$\pm1$,2,4
|
|
$200$
|
${}^{16}\mathrm {O}-$Hg
|
0 |
|
|
MDRP |
$
\text{<1.3E-6}
$
|
c
|
$\pm1$,2,4
|
|
$200$
|
S$-$Hg
|
0 |
|
|
MDRP |
$
\text{<5E-2}
$
|
e
|
2
|
$19 - 27$
|
$\text{52 - 60}$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
TOPZ |
$
\text{<5E-2}
$
|
e
|
4
|
$<$24
|
$\text{52 - 60}$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
TOPZ |
$
\text{<1.E-4}
$
|
e
|
$+2$
|
$<3.5$
|
$10$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
CLEO |
$
\text{<1.E-6}
$
|
d
|
$\pm1$,2
|
|
$60$
|
${}^{16}\mathrm {O}-$Hg
|
0 |
|
|
MDRP |
$
\text{<3.5E-7}
$
|
d
|
$\pm1$,2
|
|
$200$
|
${}^{16}\mathrm {O}-$Hg
|
0 |
|
|
MDRP |
$
\text{<1.3E-6}
$
|
d
|
$\pm1$,2
|
|
$200$
|
${}^{}\mathrm {S}-$Hg
|
0 |
|
|
MDRP |
$
\text{<1.2E-10}
$
|
d
|
$\pm1$
|
$1$
|
$800$
|
${{\mathit p}}-{}^{}\mathrm {Hg}$
|
0 |
|
|
MDRP |
$
\text{<1.1E-10}
$
|
d
|
$\pm2$
|
$1$
|
$800$
|
${{\mathit p}}-{}^{}\mathrm {Hg}$
|
0 |
|
|
MDRP |
$
\text{<1.2E-10}
$
|
d
|
$\pm1$
|
$1$
|
$800$
|
${{\mathit p}}-{}^{}\mathrm {N}_{2}$
|
0 |
|
|
MDRP |
$
\text{<7.7E-11}
$
|
d
|
$\pm2$
|
$1$
|
$800$
|
${{\mathit p}}-{}^{}\mathrm {N}_{2}$
|
0 |
|
|
MDRP |
$
\text{<6.E-9}
$
|
h
|
$-5$
|
$0.9 - 2.3$
|
$12$
|
${{\mathit p}}$
|
0 |
|
|
SPEC |
$
\text{<5.E-5}
$
|
g
|
1,2
|
$<0.5$
|
|
${{\mathit \nu}}$, ${{\overline{\mathit \nu}}}{{\mathit d}}$
|
0 |
|
|
BEBC |
$
\text{<3.E-4}
$
|
b
|
See note
|
|
$14.5$
|
${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$
|
0 |
8 |
|
PLAS |
$
\text{<2.E-4}
$
|
b
|
See note
|
|
$200$
|
${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$
|
0 |
9 |
|
PLAS |
$
\text{<8E-5}
$
|
$\text{b}$
|
19,20,22,23
|
|
$200$
|
|
|
|
|
PLAS |
$
\text{<2.E-4}
$
|
a
|
$\pm1$,2
|
$<300$
|
$320$
|
${{\overline{\mathit p}}}{{\mathit p}}$
|
0 |
|
|
MLEV |
$
\text{<1.E-9}
$
|
c
|
$\pm1$,2,4,5
|
|
$14.5$
|
${}^{16}\mathrm {O}-{}^{}\mathrm {Hg}$
|
0 |
|
|
MDRP |
$
\text{<3.E-3}
$
|
d
|
$-1$,2,3,4,6
|
$<5$
|
$2$
|
${}^{}\mathrm {Si}-{}^{}\mathrm {Si}$
|
0 |
10 |
|
CNTR |
$
\text{<1.E-4}
$
|
e
|
$\pm1$,2,4
|
$<4$
|
$10$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
ARG |
$
\text{<6.E-5}
$
|
b
|
$\pm1$,2
|
1
|
$540$
|
${{\mathit p}}{{\overline{\mathit p}}}$
|
0 |
|
|
UA2 |
$
\text{<5.E-3}
$
|
e
|
$-4$
|
1$-$8
|
$29$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
TPC |
$
\text{<1.E-2}
$
|
e
|
$\pm1$,2
|
1$-$13
|
$29$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
TPC |
$
\text{<2.E-4}
$
|
b
|
$\pm1$
|
|
$72$
|
${}^{40}\mathrm {Ar}$
|
0 |
11 |
|
CNTR |
$
\text{<1.E-4}
$
|
e
|
$\pm2$
|
$<0.4$
|
$1.4$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
OLYA |
$
\text{<5.E-1}
$
|
e
|
$\pm1$,2
|
$<13$
|
$29$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
CNTR |
$
\text{<3.E-3}
$
|
b
|
$\pm1$,2
|
$<2$
|
$540$
|
${{\mathit p}}{{\overline{\mathit p}}}$
|
0 |
|
|
CNTR |
$
\text{<1.E-4}
$
|
b
|
$\pm1$,2
|
|
$106$
|
${}^{56}\mathrm {Fe}$
|
0 |
|
|
CNTR |
$
\text{<3.E-3}
$
|
b
|
$>\vert \pm0.1\vert $
|
|
$74$
|
${}^{40}\mathrm {Ar}$
|
0 |
11 |
|
PLAS |
$
\text{<1.E-2}
$
|
e
|
$\pm1$,2
|
$<14$
|
$29$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
CNTR |
$
\text{<8.E-2}
$
|
e
|
$\pm1$,2
|
$<12$
|
$29$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
CNTR |
$
\text{<3.E-4}
$
|
e
|
$\pm2$
|
$1.8-$2
|
$7$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
MRK2 |
$
\text{<5.E-2}
$
|
e
|
$+1$,2,4,5
|
2$-$12
|
$27$
|
${{\mathit e}^{+}}{{\mathit e}^{-}}$
|
0 |
|
|
JADE |
$
\text{<2.E-5}
$
|
g
|
$1$,2
|
|
|
${{\mathit \nu}}$
|
0 |
6, 5 |
|
CNTR |
$
\text{<3.E-10}
$
|
f
|
$\pm2$,4
|
1$-$3
|
$200$
|
${{\mathit p}}$
|
0 |
12 |
|
CNTR |
$
\text{<6.E-11}
$
|
f
|
$\pm1$
|
$<21$
|
$52$
|
${{\mathit p}}{{\mathit p}}$
|
0 |
|
|
SPEC |
$
\text{<5.E-3}
$
|
g
|
|
|
|
${{\mathit \nu}_{{\mu}}}$
|
0 |
|
|
CNTR |
$
\text{<2.E-9}
$
|
f
|
$\pm1$
|
$<26$
|
$62$
|
${{\mathit p}}{{\mathit p}}$
|
0 |
|
|
SPEC |
$
\text{<7.E-10}
$
|
f
|
$+1$,2
|
$<20$
|
$52$
|
${{\mathit p}}$
|
0 |
13 |
|
CNTR |
$
$
|
|
$+1$,2
|
$>4.5$
|
|
${{\mathit \gamma}}$
|
0 |
6, 5 |
|
CNTR |
$
$
|
|
$+1$,2
|
$>1.5$
|
$12$
|
${{\mathit e}^{-}}$
|
0 |
6, 5 |
|
CNTR |
$
$
|
|
$+1$,2
|
$>0.9$
|
|
${{\mathit \gamma}}$
|
0 |
6 |
|
CNTR |
$
$
|
|
$+1$,2
|
$>0.9$
|
$6$
|
${{\mathit \gamma}}$
|
0 |
6 |
|
CNTR |
1
HUENTRUP 1996 quote 95$\%$ CL limits for production of fragments with charge differing by as much as $\pm1$/3 (in units of e) for charge 6${}\leq{}Z{}\leq{}$10.
|
2
BUSKULIC 1993C limits for inclusive quark production are more conservative if the ALEPH hadronic fragmentation function is assumed.
|
3
CECCHINI 1993 limit at 90$\%$CL for 23/3 ${}\leq{}Z{}\leq{}$40/3, for 16$\mathit A$ GeV O, 14.5$\mathit A$ Si, and 200$\mathit A$ S incident on Cu target. Other limits are $2.3 \times 10^{-4}$ for 17/3${}\leq{}Z{}\leq{}$20/3 and $1.2 \times 10^{-4}$ for 20/3 ${}\leq{}Z{}\leq{}$23/3.
|
4
GHOSH 1992 reports measurement of spallation fragment charge based on ionization in emulsion. Out of 650 measured tracks, 2 were consistent with charge 5${{\mathit e}}$/3, and 4 with 7${{\mathit e}}$/3.
|
5
Hadronic quark.
|
6
Leptonic quark.
|
7
HE 1991 limits are for charges of the form $\mathit N\pm1$/3 from 23/3 to 38/3, and correspond to cross-section limits of 380$\mu $b$~$(Pb) and 320$\mu $b$~$(Cu).
|
8
The limits apply to projectile fragment charges of 17, 19, 20, 22, 23 in units of $\mathit e$/3.
|
9
The limits apply to projectile fragment charges of 16, 17, 19, 20, 22, 23 in units of $\mathit e$/3.
|
10
Flux limits and mass range depend on charge.
|
11
Bound to nuclei.
|
12
Quark lifetimes $>1 \times 10^{-8}$ s.
|
13
One candidate $\mathit m$ $<$0.17 GeV.
|
|