Quark Flux $-$ Accelerator Searches

INSPIRE   JSON  (beta) PDGID:
S027FR
The definition of FLUX depends on the experiment

(a)is the ratio of measured free quarks to predicted free quarks if there is no “confinement.''
(b)is the probability of fractional charge on nuclear fragments. Energy is in GeV/nucleon.
(c)is the 90$\%$CL upper limit on fractionally-charged particles produced per interaction.
(d)is quarks per collision.
(e)is inclusive quark-production cross-section ratio to ${\mathit \sigma (}{{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$.
(f)is quark flux per charged particle.
(g)is the flux per ${{\mathit \nu}}$-event.
(h)is quark yield per ${{\mathit \pi}^{-}}$ yield.
(i)is 2-body exclusive quark-production cross-section ratio to ${\mathit \sigma (}{{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{)}$.
FLUX CHG ${\mathrm {(\mathit e/3)}}$ MASS ${\mathrm {(GeV)}}$ ENRGY ${\mathrm {(GeV)}}$ BEAM EVTS DOCUMENT ID TECN
$ \text{<1.6E-3} $ b see note $200$ ${}^{32}\mathrm {S}-{}^{}\mathrm {Pb}$ 0 1
HUENTRUP
99
 
PLAS
$ \text{<6.2E-4} $ b see note $10.6$ ${}^{32}\mathrm {S}-{}^{}\mathrm {Pb}$ 0 1
HUENTRUP
99
 
PLAS
$ \text{<0.94E-4} $ e $\pm2$ $2 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
99R
 
OPAL
$ \text{<1.7E-4} $ e $\pm2$ $30 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
99R
 
OPAL
$ \text{<3.6E-4} $ e $\pm4$ $5 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
99R
 
OPAL
$ \text{<1.9E-4} $ e $\pm4$ $30 - 45$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AKERS
99R
 
OPAL
$ \text{<2.E-3} $ e $+1$ $5 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
99C
 
ALEP
$ \text{<6.E-4} $ e $+2$ $5 - 30$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
99C
 
ALEP
$ \text{<1.2E-3} $ e $+4$ $15 - 40$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0 2
BUSKULIC
99C
 
ALEP
$ \text{<3.6E-4} $ i $+4$ $5.0 - 10.2$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
99C
 
ALEP
$ \text{<3.6E-4} $ i $+4$ $16.5 - 26.0$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
99C
 
ALEP
$ \text{<6.9E-4} $ i $+4$ $26.0 - 33.3$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
99C
 
ALEP
$ \text{<9.1E-4} $ i $+4$ $33.3 - 38.6$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
99C
 
ALEP
$ \text{<1.1E-3} $ i $+4$ $38.6 - 44.9$ $88 - 94$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BUSKULIC
99C
 
ALEP
$ \text{<1.6E-4} $ b see note see note 0 3
CECCHINI
99
 
PLAS
$ \text{} $ b 4,5,7,8 $2.1$A ${}^{16}\mathrm {O}$ 0,2,0,6 4
GHOSH
99
 
EMUL
$ \text{<6.4E-5} $ g 1 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 1 5
BASILE
99
 
CNTR
$ \text{<3.7E-5} $ g 2 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 0 5
BASILE
99
 
CNTR
$ \text{<3.9E-5} $ g 1 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 1 6
BASILE
99
 
CNTR
$ \text{<2.8E-5} $ g 2 ${{\mathit \nu}},{{\overline{\mathit \nu}}}$ 0 6
BASILE
99
 
CNTR
$ \text{<1.9E-4} $ c $14.5$A ${}^{28}\mathrm {Si}-$Pb 0 7
HE
99
 
PLAS
$ \text{<3.9E-4} $ c $14.5$A ${}^{28}\mathrm {Si}-$Cu 0 7
HE
99
 
PLAS
$ \text{<1.E-9} $ c $\pm1$,2,4 $14.5$A ${}^{16}\mathrm {O}-$Ar 0
MATIS
99
 
MDRP
$ \text{<5.1E-10} $ c $\pm1$,2,4 $14.5$A ${}^{16}\mathrm {O}-$Hg 0
MATIS
99
 
MDRP
$ \text{<8.1E-9} $ c $\pm1$,2,4 $14.5$A Si$-$Hg 0
MATIS
99
 
MDRP
$ \text{<1.7E-6} $ c $\pm1$,2,4 60A ${}^{16}\mathrm {O}-$Hg 0
MATIS
99
 
MDRP
$ \text{<3.5E-7} $ c $\pm1$,2,4 200A ${}^{16}\mathrm {O}-$Hg 0
MATIS
99
 
MDRP
$ \text{<1.3E-6} $ c $\pm1$,2,4 200A S$-$Hg 0
MATIS
99
 
MDRP
$ \text{<5E-2} $ e 2 $19 - 27$ $52 - 60$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ADACHI
99C
 
TOPZ
$ \text{<5E-2} $ e 4 $<$24 $52 - 60$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ADACHI
99C
 
TOPZ
$ \text{<1.E-4} $ e $+2$ <3.5 $10$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BOWCOCK
98B
 
CLEO
$ \text{<1.E-6} $ d $\pm1$,2 $60$ ${}^{16}\mathrm {O}-$Hg 0
CALLOWAY
98
 
MDRP
$ \text{<3.5E-7} $ d $\pm1$,2 $200$ ${}^{16}\mathrm {O}-$Hg 0
CALLOWAY
98
 
MDRP
$ \text{<1.3E-6} $ d $\pm1$,2 $200$ ${}^{}\mathrm {S}-$Hg 0
CALLOWAY
98
 
MDRP
$ \text{<1.2E-10} $ d $\pm1$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {Hg}$ 0
MATIS
98
 
MDRP
$ \text{<1.1E-10} $ d $\pm2$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {Hg}$ 0
MATIS
98
 
MDRP
$ \text{<1.2E-10} $ d $\pm1$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {N}_{2}$ 0
MATIS
98
 
MDRP
$ \text{<7.7E-11} $ d $\pm2$ $1$ $800$ ${{\mathit p}}-{}^{}\mathrm {N}_{2}$ 0
MATIS
98
 
MDRP
$ \text{<6.E-9} $ h $-5$ $0.9 - 2.3$ $12$ ${{\mathit p}}$ 0
NAKAMURA
98
 
SPEC
$ \text{<5.E-5} $ g 1,2 <0.5 ${{\mathit \nu}},{{\overline{\mathit \nu}}}{{\mathit d}}$ 0
ALLASIA
98
 
BEBC
$ \text{<3.E-4} $ b See note $14.5$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$ 0 8
HOFFMANN
98
 
PLAS
$ \text{<2.E-4} $ b See note $200$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Pb}$ 0 9
HOFFMANN
98
 
PLAS
$ \text{<8E-5} $ b 19,20,22,23 200$\mathit A$
GERBIER
98
 
PLAS
$ \text{<2.E-4} $ a $\pm1$,2 <300 $320$ ${{\overline{\mathit p}}}{{\mathit p}}$ 0
LYONS
98
 
MLEV
$ \text{<1.E-9} $ c $\pm1$,2,4,5 $14.5$ ${}^{16}\mathrm {O}-{}^{}\mathrm {Hg}$ 0
SHAW
98
 
MDRP
$ \text{<3.E-3} $ d $-1$,2,3,4,6 <5 $2$ ${}^{}\mathrm {Si}-{}^{}\mathrm {Si}$ 0 10
ABACHI
98C
 
CNTR
$ \text{<1.E-4} $ e $\pm1$,2,4 <4 $10$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ALBRECHT
98G
 
ARG
$ \text{<6.E-5} $ b $\pm1$,2 1 $540$ ${{\mathit p}}{{\overline{\mathit p}}}$ 0
BANNER
98
 
UA2
$ \text{<5.E-3} $ e $-4$ 1$-$8 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AIHARA
98
 
TPC
$ \text{<1.E-2} $ e $\pm1$,2 1$-$13 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
AIHARA
98B
 
TPC
$ \text{<2.E-4} $ b $\pm1$ $72$ ${}^{40}\mathrm {Ar}$ 0 11
BARWICK
98
 
CNTR
$ \text{<1.E-4} $ e $\pm2$ <0.4 $1.4$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BONDAR
98
 
OLYA
$ \text{<5.E-1} $ e $\pm1$,2 <13 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
GURYN
98
 
CNTR
$ \text{<3.E-3} $ b $\pm1$,2 <2 $540$ ${{\mathit p}}{{\overline{\mathit p}}}$ 0
BANNER
98
 
CNTR
$ \text{<1.E-4} $ b $\pm1$,2 $106$ ${}^{56}\mathrm {Fe}$ 0
LINDGREN
98
 
CNTR
$ \text{<3.E-3} $ b $>\vert \pm0.1\vert $ $74$ ${}^{40}\mathrm {Ar}$ 0 11
PRICE
98
 
PLAS
$ \text{<1.E-2} $ e $\pm1$,2 <14 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
MARINI
98B
 
CNTR
$ \text{<8.E-2} $ e $\pm1$,2 <12 $29$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
ROSS
98
 
CNTR
$ \text{<3.E-4} $ e $\pm2$ $1.8-$2 $7$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
WEISS
98
 
MRK2
$ \text{<5.E-2} $ e $+1$,2,4,5 2$-$12 $27$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ 0
BARTEL
98
 
JADE
$ \text{<2.E-5} $ g $1$,2 ${{\mathit \nu}}$ 0 6, 5
BASILE
98
 
CNTR
$ \text{<3.E-10} $ f $\pm2$,4 1$-$3 $200$ ${{\mathit p}}$ 0 12
BOZZOLI
97
 
CNTR
$ \text{<6.E-11} $ f $\pm1$ <21 $52$ ${{\mathit p}}{{\mathit p}}$ 0
BASILE
97
 
SPEC
$ \text{<5.E-3} $ g ${{\mathit \nu}_{{{\mu}}}}$ 0
BASILE
97B
 
CNTR
$ \text{<2.E-9} $ f $\pm1$ <26 $62$ ${{\mathit p}}{{\mathit p}}$ 0
BASILE
97
 
SPEC
$ \text{<7.E-10} $ f $+1$,2 <20 $52$ ${{\mathit p}}$ 0 13
FABJAN
97
 
CNTR
$ $ $+1$,2 >4.5 ${{\mathit \gamma}}$ 0 6, 5
GALIK
97
 
CNTR
$ $ $+1$,2 >1.5 $12$ ${{\mathit e}^{-}}$ 0 6, 5
BELLAMY
96
 
CNTR
$ $ $+1$,2 >0.9 ${{\mathit \gamma}}$ 0 6
BATHOW
96
 
CNTR
$ $ $+1$,2 >0.9 $6$ ${{\mathit \gamma}}$ 0 6
FOSS
96
 
CNTR
1  HUENTRUP 1996 quote 95$\%$ CL limits for production of fragments with charge differing by as much as $\pm1$/3 (in units of e) for charge 6${}\leq{}Z{}\leq{}$10.
2  BUSKULIC 1993C limits for inclusive quark production are more conservative if the ALEPH hadronic fragmentation function is assumed.
3  CECCHINI 1993 limit at 90$\%$CL for 23/3 ${}\leq{}Z{}\leq{}$40/3, for 16$\mathit A$ GeV O, 14.5$\mathit A$ Si, and 200$\mathit A$ S incident on Cu target. Other limits are $2.3 \times 10^{-4}$ for 17/3${}\leq{}Z{}\leq{}$20/3 and $1.2 \times 10^{-4}$ for 20/3 ${}\leq{}Z{}\leq{}$23/3.
4  GHOSH 1992 reports measurement of spallation fragment charge based on ionization in emulsion. Out of 650 measured tracks, 2 were consistent with charge 5${{\mathit e}}$/3, and 4 with 7${{\mathit e}}$/3.
5  Hadronic quark.
6  Leptonic quark.
7  HE 1991 limits are for charges of the form $\mathit N\pm1$/3 from 23/3 to 38/3, and correspond to cross-section limits of 380$\mu $b$~$(Pb) and 320$\mu $b$~$(Cu).
8  The limits apply to projectile fragment charges of 17, 19, 20, 22, 23 in units of $\mathit e$/3.
9  The limits apply to projectile fragment charges of 16, 17, 19, 20, 22, 23 in units of $\mathit e$/3.
10  Flux limits and mass range depend on charge.
11  Bound to nuclei.
12  Quark lifetimes $>1 \times 10^{-8}$ s.
13  One candidate $\mathit m$ $<$0.17 GeV.
References