${{\boldsymbol W}}$ MASS INSPIRE search

The ${{\mathit W}}$-mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world average, common systematic uncertainties between experiments are properly taken into account. The LEP-2 average ${{\mathit W}}~$mass based on published results is $80.376$ $\pm0.033$ GeV [SCHAEL 2013A]. The combined Tevatron data yields an average ${{\mathit W}}$ mass of $80.387$ $\pm0.016$ GeV [AALTONEN 2013N]. A combination of the LEP average with this Tevatron average and the ATLAS value [AABOUD 2018J], assuming a common systematic error of 7 MeV between the latter two [Jens Erler, 52nd Rencontres de Moriond EW, March 2017], the world average ${{\mathit W}}$ mass of $80.379$ $\pm0.012$ GeV is obtained. OUR FIT quotes this value for the ${{\mathit W}}$ mass.
VALUE (GeV) EVTS DOCUMENT ID TECN  COMMENT
$\bf{ 80.379 \pm0.012}$ OUR FIT
$80.370$ $\pm0.007$ $\pm0.017$ 13.7M 1
AABOUD
2018J
ATLS ${\it{}E}^{\it{}pp}_{\rm{}cm}$ = 7 TeV
$80.375$ $\pm0.023$ 2177k 2
ABAZOV
2014N
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$80.387$ $\pm0.019$ 1095k 3
AALTONEN
2012E
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$80.336$ $\pm0.055$ $\pm0.039$ 10.3k 4
ABDALLAH
2008A
DLPH ${\it{}E}^{\it{}ee}_{\rm{}cm}$ = $161 - 209$ GeV
$80.415$ $\pm0.042$ $\pm0.031$ 11830 5
ABBIENDI
2006
OPAL ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $170 - 209$ GeV
$80.270$ $\pm0.046$ $\pm0.031$ 9909 6
ACHARD
2006
L3 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $161 - 209$ GeV
$80.440$ $\pm0.043$ $\pm0.027$ 8692 7
SCHAEL
2006
ALEP ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $161 - 209$ GeV
$80.483$ $\pm0.084$ 49247 8
ABAZOV
2002D
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= $1.8$ TeV
$80.433$ $\pm0.079$ 53841 9
AFFOLDER
2001E
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= 1.8 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
$80.367$ $\pm0.026$ 1677k 10
ABAZOV
2012F
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$80.401$ $\pm0.043$ 500k 11
ABAZOV
2009AB
D0 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$80.413$ $\pm0.034$ $\pm0.034$ 115k 12
AALTONEN
2007F
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$ = 1.96 TeV
$82.87$ $\pm1.82$ ${}^{+0.30}_{-0.16}$ 1500 13
AKTAS
2006
H1 ${{\mathit e}^{\pm}}$ ${{\mathit p}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{e}}}$ (${{\mathit \nu}_{{e}}}){{\mathit X}}$, $\sqrt {s }\approx{}$300 GeV
$80.3 \pm2.1 \pm1.2 \pm1.0$ 645 14
CHEKANOV
2002C
ZEUS ${{\mathit e}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \nu}_{{e}}}$ X, $\sqrt {\mathit s }$= 318 GeV
$81.4 {}^{+2.7}_{-2.6} \pm2.0 {}^{+3.3}_{-3.0}$ 1086 15
BREITWEG
2000D
ZEUS ${{\mathit e}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\overline{\mathit \nu}}_{{e}}}$ X, $\sqrt {\mathit s }\approx{}$ 300 GeV
$80.84$ $\pm0.22$ $\pm0.83$ 2065 16
ALITTI
1992B
UA2 See ${{\mathit W}}/{{\mathit Z}}$ ratio below
$80.79$ $\pm0.31$ $\pm0.84$ 17
ALITTI
1990B
UA2 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= 546,630 GeV
$80.0$ $\pm3.3$ $\pm2.4$ 22 18
ABE
1989I
CDF ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= $1.8$ TeV
$82.7$ $\pm1.0$ $\pm2.7$ 149 19
ALBAJAR
1989
UA1 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= 546,630 GeV
$81.8$ ${}^{+6.0}_{-5.3}$ $\pm2.6$ 46 20
ALBAJAR
1989
UA1 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= 546,630 GeV
$89$ $\pm3$ $\pm6$ 32 21
ALBAJAR
1989
UA1 ${\it{}E}^{\it{}p\overline{\it{}p}}_{\rm{}cm}$= 546,630 GeV
$81.$ $\pm5.$ 6
ARNISON
1983
UA1 ${\it{}E}^{\it{}ee}_{\rm{}cm}$= $546$ GeV
$80$ ${}^{+10}_{-6}$ 4
BANNER
1983B
UA2 Repl. by ALITTI 1990B
1  AABOUD 2018J select 4.61M ${{\mathit W}^{+}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$ , 3.40M ${{\mathit W}^{+}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$ , 3.23M ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{\mu}}}$ and 2.49M ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{e}}}$ events in 4.6 fb${}^{-1}$ ${{\mathit p}}{{\mathit p}}$ data at 7 TeV. The ${{\mathit W}}$ mass is determined using the transverse mass and transverse lepton momentum distributions, accounting for correlations. The systematic error includes 0.011 GeV experimental and 0.014 GeV modelling uncertainties.
2  ABAZOV 2014N is a combination of ABAZOV 2009AB and ABAZOV 2012F, also giving more details on the analysis.
3  AALTONEN 2012E select 470k ${{\mathit W}}$ ${{\mathit \nu}}$ decays and 625k ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}$ decays in 2.2 fb${}^{-1}$ of Run-II data. The mass is determined using the transverse mass, transverse lepton momentum and transverse missing energy distributions, accounting for correlations. This result supersedes AALTONEN 2007F. AALTONEN 2014D gives more details on the procedures followed by the authors.
4  ABDALLAH 2008A use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events for energies 172 GeV and above. The ${{\mathit W}}$ mass was also extracted from the dependence of the ${{\mathit W}}{{\mathit W}}$ cross section close to the production threshold and combined appropriately to obtain the final result. The systematic error includes $\pm0.025$ GeV due to final state interactions and $\pm0.009$ GeV due to LEP energy uncertainty.
5  ABBIENDI 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events. The result quoted here is obtained combining this mass value with the results using ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}{{\mathit \ell}^{\,'}}{{\mathit \nu}}_{{{\mathit \ell}^{\,'}}}$ events in the energy range $183 - 207$ GeV (ABBIENDI 2003C) and the dependence of the $WW$ production cross-section on ${\mathit m}_{{{\mathit W}}}$ at threshold. The systematic error includes $\pm0.009$ GeV due to the uncertainty on the LEP beam energy.
6  ACHARD 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events in the C.M. energy range $189 - 209$ GeV. The result quoted here is obtained combining this mass value with the results obtained from a direct ${{\mathit W}}$ mass reconstruction at 172 and 183 GeV and with those from the dependence of the ${{\mathit W}}{{\mathit W}}$ production cross-section on ${\mathit m}_{{{\mathit W}}}$ at 161 and 172 GeV (ACCIARRI 1999 ).
7  SCHAEL 2006 use direct reconstruction of the kinematics of ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ and ${{\mathit W}^{+}}$ ${{\mathit W}^{-}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ events in the C.M. energy range $183 - 209$ GeV. The result quoted here is obtained combining this mass value with those obtained from the dependence of the ${{\mathit W}}$ pair production cross-section on ${\mathit m}_{{{\mathit W}}}$ at 161 and 172 GeV (BARATE 1997 and BARATE 1997S respectively). The systematic error includes $\pm0.009$ GeV due to possible effects of final state interactions in the ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ channel and $\pm0.009$ GeV due to the uncertainty on the LEP beam energy.
8  ABAZOV 2002D improve the measurement of the ${{\mathit W}}$-boson mass including ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{e}}}$ events in which the electron is close to a boundary of a central electromagnetic calorimeter module. Properly combining the results obtained by fitting $\mathit m_{\mathit T}({{\mathit W}}$), $\mathit p_{\mathit T}({{\mathit e}}$), and $\mathit p_{\mathit T}({{\mathit \nu}}$), this sample provides a mass value of $80.574$ $\pm0.405$ GeV. The value reported here is a combination of this measurement with all previous ${D0}{{\mathit W}}$-boson mass measurements.
9  AFFOLDER 2001E fit the transverse mass spectrum of 30115 ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{e}}}$ events ($\mathit M_{{{\mathit W}}}$= $80.473$ $\pm0.065$ $\pm0.092$ GeV) and of 14740 ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}_{{\mu}}}$ events ($\mathit M_{{{\mathit W}}}$= $80.465$ $\pm0.100$ $\pm0.103$ GeV) obtained in the run IB (1994-95). Combining the electron and muon results, accounting for correlated uncertainties, yields $\mathit M_{{{\mathit W}}}$= $80.470$ $\pm0.089$ GeV. They combine this value with their measurement of ABE 1995P reported in run IA (1992-93) to obtain the quoted value.
10  ABAZOV 2012F select 1677k ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ decays in 4.3 fb${}^{-1}$ of Run-II data. The mass is determined using the transverse mass and transverse lepton momentum distributions, accounting for correlations.
11  ABAZOV 2009AB study the transverse mass, transverse electron momentum, and transverse missing energy in a sample of 0.5 million ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ decays selected in Run-II data. The quoted result combines all three methods, accounting for correlations.
12  AALTONEN 2007F obtain high purity ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}_{{e}}}$ and ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}_{{\mu}}}$ candidate samples totaling 63,964 and 51,128 events respectively. The ${{\mathit W}}$ mass value quoted above is derived by simultaneously fitting the transverse mass and the lepton, and neutrino p$_{T}$ distributions.
13  AKTAS 2006 fit the Q${}^{2}$ dependence (300 $<$ Q${}^{2}$ $<$ 30,000 GeV${}^{2}$) of the charged-current differential cross section with a propagator mass. The first error is experimental and the second corresponds to uncertainties due to input parameters and model assumptions.
14  CHEKANOV 2002C fit the $\mathit Q{}^{2}$ dependence (200$<\mathit Q{}^{2}<$60000 GeV${}^{2}$) of the charged-current differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
15  BREITWEG 2000D fit the $\mathit Q{}^{2}$ dependence (200 $<$ Q${}^{2}<$ 22500 GeV${}^{2}$) of the charged-current differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
16  ALITTI 1992B result has two contributions to the systematic error ($\pm0.83$); one ($\pm0.81$) cancels in ${\mathit m}_{{{\mathit W}}}/{\mathit m}_{{{\mathit Z}}}$ and one ($\pm0.17$) is noncancelling. These were added in quadrature. We choose the ALITTI 1992B value without using the LEP ${\mathit m}_{{{\mathit Z}}}$ value, because we perform our own combined fit.
17  There are two contributions to the systematic error ($\pm0.84$): one ($\pm0.81$) which cancels in ${\mathit m}_{{{\mathit W}}}/{\mathit m}_{{{\mathit Z}}}$ and one ($\pm0.21$) which is non-cancelling. These were added in quadrature.
18  ABE 1989I systematic error dominated by the uncertainty in the absolute energy scale.
19  ALBAJAR 1989 result is from a total sample of 299 ${{\mathit W}}$ $\rightarrow$ ${{\mathit e}}{{\mathit \nu}}$ events.
20  ALBAJAR 1989 result is from a total sample of 67 ${{\mathit W}}$ $\rightarrow$ ${{\mathit \mu}}{{\mathit \nu}}$ events.
21  ALBAJAR 1989 result is from ${{\mathit W}}$ $\rightarrow$ ${{\mathit \tau}}{{\mathit \nu}}$ events.
  References:
AABOUD 2018J
EPJ C78 110 Measurement of the ${{\mathit W}}$ -boson Mass in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
ABAZOV 2014N
PR D89 012005 Measurement of the ${{\mathit W}}$ Boson Mass with the ${D0}$ Detector
AALTONEN 2012E
PRL 108 151803 Precise Measurement of the ${{\mathit W}}$-Boson Mass with the CDF II Detector
ABAZOV 2012F
PRL 108 151804 Measurement of the W Boson Mass with the ${D0}$ Detector
ABAZOV 2009AB
PRL 103 141801 Measurement of the ${{\mathit W}}$ Boson Mass
ABDALLAH 2008A
EPJ C55 1 Measurement of the Mass and Width of the ${{\mathit W}}$ Boson in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at $\sqrt {s }$ = $161 - 209$ GeV
AALTONEN 2007F
PRL 99 151801 First Measurement of the $\mathit W$-Boson Mass in Run II of the Tevatron
ABBIENDI 2006
EPJ C45 307 Measurement of the Mass and Width of the ${{\mathit W}}$ Boson
ACHARD 2006
EPJ C45 569 Measurement of the Mass and the Width of the ${{\mathit W}}$ Boson at LEP
AKTAS 2006
PL B632 35 A Determination of Electroweak Parameters at HERA
SCHAEL 2006
EPJ C47 309 Measurement of the ${{\mathit W}}$ Boson Mass and Width in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Collisions at LEP
ABAZOV 2002D
PR D66 012001 Improved ${{\mathit W}}$ Boson Mass Measurement with the ${D0}$ Detector
CHEKANOV 2002C
PL B539 197 Measurement of High Q${}^{2}$ Charged Current Cross Sections in ${{\mathit e}^{-}}{{\mathit p}}$ Deep Inelastic Scattering at HERA
AFFOLDER 2001E
PR D64 052001 Measurement of the ${{\mathit W}}$ Boson Mass with the Collider Detector at Fermilab
BREITWEG 2000D
EPJ C12 411 Measurement of High Q${}^{2}$ Charged Current ${{\mathit e}^{+}}{{\mathit p}}$ Deep Inelastic Scattering Cross Sections at HERA
ALITTI 1992B
PL B276 354 An Improved Determination of the Ratio of ${{\mathit W}}$ and ${{\mathit Z}}$ Masses at the CERN ${{\overline{\mathit p}}}{{\mathit p}}$ Collider
ALITTI 1990B
PL B241 150 A Precise Determination of the ${{\mathit W}}$ and ${{\mathit Z}}$ Masses at the CERN ${{\overline{\mathit p}}}{{\mathit p}}$ Collider
ABE 1989I
PRL 62 1005 Measurement of ${{\mathit W}}$ Boson Production in 1.8 TeV ${{\overline{\mathit p}}}{{\mathit p}}$ Collisions
ALBAJAR 1989
ZPHY C44 15 Studies of Intermediate Vector Boson Production and Decay in UA1 at the CERN Proton-Antiproton Collider
ARNISON 1983
PL 122B 103 Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at $\sqrt {s }$ = 540 GeV
BANNER 1983B
PL 122B 476 Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN ${{\overline{\mathit p}}}{{\mathit p}}$ Collider
ACCIARRI 1999T
PL B461 155 Formation of the ${{\mathit \eta}_{{c}}}$ in Two Photon Collisions at LEP
ABBIENDI 2006C
PL B638 30 QCD Coherence and Correlations of Particles with Restricted Momenta in Hadronic ${{\mathit Z}}$ Decays
ABE 1995P
PRL 75 11 Measurement of the ${{\mathit W}}$ Boson Mass
SCHAEL 2013A
PRPL 532 119 Electroweak Measurements in Electron$−$Positron Collisions at ${{\mathit W}}$-Boson-Pair Energies at LEP
AALTONEN 2013N
PR D88 052018 Combination of CDF and ${D0}{{\mathit W}}$-Boson Mass Measurements