SCALE LIMITS for Contact Interactions: $\Lambda\mathrm {( {{\boldsymbol q}} {{\boldsymbol q}} {{\boldsymbol q}} {{\boldsymbol q}} )}$ INSPIRE search

$\Lambda_{LL}^+({\mathrm {TeV}}$) $\Lambda_{LL}^-({\mathrm {TeV}}$) CL% DOCUMENT ID TECN  COMMENT
$ \bf{\text{>13.1 none 17.4 - 29.5}} $ > 21.8 95 1
AABOUD
2017AK
ATLS ${{\mathit p}}{{\mathit p}}$ dijet angl.
• • • We do not use the following data for averages, fits, limits, etc. • • •
2
AABOUD
2018AV
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit t}}{{\overline{\mathit t}}}$
$ >12.8 $ >17.5 95 3
SIRUNYAN
2018DD
CMS ${{\mathit p}}{{\mathit p}}$ dijet angl.
$ > 11.5 $ > 14.7 95 4
SIRUNYAN
2017F
CMS ${{\mathit p}}{{\mathit p}}$ dijet angl.
$ > 12.0 $ > 17.5 95 5
AAD
2016S
ATLS ${{\mathit p}}{{\mathit p}}$ dijet angl.
6
AAD
2015AR
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit t}}{{\overline{\mathit t}}}$
7
AAD
2015BY
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit t}}{{\overline{\mathit t}}}$
$ > 8.1 $ > 12.0 95 8
AAD
2015L
ATLS ${{\mathit p}}{{\mathit p}}$ dijet angl.
$ > 9.0 $ > 11.7 95 9
KHACHATRYAN
2015J
CMS ${{\mathit p}}{{\mathit p}}$ dijet angl.
$> 5$ 95 10
FABBRICHESI
2014
RVUE ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit t}}{{\overline{\mathit t}}}$
1  AABOUD 2017AK limit is from dijet angular distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit u}}$, ${{\mathit d}}$, and ${{\mathit s}}$ quarks are assumed to be composite.
2  AABOUD 2018AV obtain limit on ${{\mathit t}_{{R}}}$ compositeness 2${{\mathit \pi}}/{{\mathit \Lambda}_{{RR}}^{2}}$ $<$ 1.6 TeV${}^{-2}$ at 95$\%$ CL from ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit t}}{{\overline{\mathit t}}}$ production in the ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV.
3  SIRUNYAN 2018DD limit is from dijet angular distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
4  SIRUNYAN 2017F limit is from dijet angular cross sections in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. All quarks are assumed to be composite.
5  AAD 2016S limit is from dijet angular selections in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. ${{\mathit u}}$, ${{\mathit d}}$, and ${{\mathit s}}$ quarks are assumed to be composite.
6  AAD 2015AR obtain limit on the ${{\mathit t}_{{R}}}$ compositeness 2$\pi /{{\mathit \Lambda}_{{RR}}^{2}}$ $<$ 6.6 TeV${}^{-2}$ at 95$\%$ CL from the ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit t}}{{\overline{\mathit t}}}$ production in the ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV.
7  AAD 2015BY obtain limit on the ${{\mathit t}_{{R}}}$ compositeness 2$\pi /{{\mathit \Lambda}}{}^{2}_{RR}$ $<$ 15.1 TeV${}^{-2}$ at 95$\%$ CL from the ${{\mathit t}}{{\overline{\mathit t}}}{{\mathit t}}{{\overline{\mathit t}}}$ production in the ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV.
8  AAD 2015L limit is from dijet angular distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. ${{\mathit u}}$, ${{\mathit d}}$, and ${{\mathit s}}$ quarks are assumed to be composite.
9  KHACHATRYAN 2015J limit is from dijet angular distribution in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. ${{\mathit u}}$, ${{\mathit d}}$, ${{\mathit s}}$, ${{\mathit c}}$, and ${{\mathit b}}$ quarks are assumed to be composite.
10  FABBRICHESI 2014 obtain bounds on chromoelectric and chromomagnetic form factors of the top-quark using ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$ and ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$ cross sections. The quoted limit on the ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit t}}{{\overline{\mathit t}}}$ contact interaction is derived from their bound on the chromoelectric form factor.
  References:
AABOUD 2018AV
JHEP 1807 089 Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple $b$-jets with the ATLAS detector
SIRUNYAN 2018DD
EPJ C78 789 Search for new physics in dijet angular distributions using proton?proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter and other models
AABOUD 2017AK
PR D96 052004 Search for New Phenomena in Dijet Events using 37 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ Collision Data Collected at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
SIRUNYAN 2017F
JHEP 1707 013 Search for New Physics with Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
AAD 2016S
PL B754 302 Search for New Phenomena in Dijet Mass and Angular Distributions from ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 13 TeV with the ATLAS Detector
AAD 2015AR
JHEP 1508 105 Search for Production of Vector-Like Quark Pairs and of Four Top Quarks in the Lepton-plus-Jets Final State in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
AAD 2015L
PRL 114 221802 Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV Measured with the ATLAS Detector
AAD 2015BY
JHEP 1510 150 Analysis of Events with ${\mathit {\mathit b}}$-Jets and a Pair of Leptons of the Same Charge in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2015J
PL B746 79 Search for Quark Contact Interactions and Extra Spatial Dimensions using Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
FABBRICHESI 2014
PR D89 074028 Stringent Limits on top-Quark Compositeness from ${\mathit {\mathit t}}{\mathit {\overline{\mathit t}}}$ Production at the Tevatron and the LHC