• • • We do not use the following data for averages, fits, limits, etc. • • • |
|
|
1 |
|
CMS |
|
|
2 |
|
ATLS |
|
|
3 |
|
ATLS |
|
|
4 |
|
CMS |
|
|
5 |
|
CMS |
|
|
6 |
|
CMS |
|
|
7 |
|
CMS |
|
|
8 |
|
ATLS |
|
|
9 |
|
ATLS |
|
|
10 |
|
ATLS |
|
|
11 |
|
ATLS |
|
|
12 |
|
ATLS |
|
|
13 |
|
ATLS |
|
|
14 |
|
ATLS |
|
|
15 |
|
ATLS |
|
|
16 |
|
CDF |
|
|
17 |
|
CMS |
|
|
18 |
|
CMS |
|
|
19 |
|
CMS |
|
|
20 |
|
CMS |
|
|
21 |
|
CMS |
|
|
22 |
|
CMS |
|
|
23 |
|
ATLS |
|
|
24 |
|
ATLS |
|
|
25 |
|
ATLS |
|
|
26 |
|
ATLS |
|
|
27 |
|
ATLS |
|
|
28 |
|
ATLS |
|
|
29 |
|
CMS |
|
|
30 |
|
CMS |
|
|
31 |
|
CMS |
|
|
32 |
|
CMS |
|
|
33 |
|
CMS |
|
|
34 |
|
ATLS |
|
|
35 |
|
ATLS |
|
|
36 |
|
CMS |
|
|
37 |
|
CMS |
|
|
38 |
|
CDF |
|
|
39 |
|
CMS |
|
|
40 |
|
CDF |
|
|
41 |
|
OPAL |
|
|
42 |
|
ALEP |
|
|
43 |
|
D0 |
$\text{none 3 - 63}$ |
95 |
44 |
|
OPAL |
$>104$ |
95 |
45 |
|
OPAL |
|
|
46 |
|
DLPH |
$>110.3$ |
95 |
47 |
|
L3 |
|
|
48 |
|
L3 |
|
|
49 |
|
OPAL |
|
|
50 |
|
OPAL |
$>105.4$ |
95 |
51, 52 |
|
ALEP |
$>109.1$ |
95 |
53 |
|
ALEP |
$\text{none 12 - 56}$ |
95 |
54 |
|
OPAL |
|
|
55 |
|
L3 |
|
|
56 |
|
L3 |
|
|
57 |
|
RVUE |
|
|
58 |
|
RVUE |
|
|
59 |
|
OPAL |
1
SIRUNYAN 2018F search for a narrow scalar resonance decaying to ${{\mathit H}^{0}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ ${{\mathit b}}{{\overline{\mathit b}}}$ or ${{\mathit Z}}{{\mathit Z}}{{\mathit b}}{{\overline{\mathit b}}}$ in the final state ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\overline{\mathit b}}}$ in 35.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $250 - 900$ GeV.
|
2
AABOUD 2017 search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for the limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.25 - 3.0$ TeV.
|
3
AABOUD 2017AW search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 36.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.25 - 2.4$ TeV.
|
4
KHACHATRYAN 2017D search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 2.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 3 and 4 for the limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.2 - 2.0$ TeV.
|
5
KHACHATRYAN 2017R search for production of a narrow scalar resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 12.9 fb${}^{-1}$ (taken in 2016) of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 2 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.5 - 4.5$ TeV for several values of its width-to-mass ratio. Limits from combination with KHACHATRYAN 2016M are shown in their Figs. 4 and 6.
|
6
SIRUNYAN 2017CN search for a narrow scalar resonance decaying to ${{\mathit H}^{0}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 18.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 5 (above) and Table II for limits on the cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.3 - 1$ TeV, and Fig. 6 (above) and Table III for the corresponding limits by combining with data from KHACHATRYAN 2016BQ and KHACHATRYAN 2015R.
|
7
SIRUNYAN 2017Y search for production of a scalar resonance decaying to ${{\mathit Z}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 2.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Figs. 3, 4 and Table 3 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.7 - 3.0$ TeV, and Fig. 5 for the corresponding limits for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.2 - 3.0$ TeV from combination with KHACHATRYAN 2017D data.
|
8
AABOUD 2016AB search for associated production of ${{\mathit W}}{{\mathit H}^{0}}$ with the decay ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 8 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $20 - 60$ GeV.
|
9
AABOUD 2016AE search for production of a narrow scalar resonance decaying to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ and ${{\mathit Z}}{{\mathit Z}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 4 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.5 - 3$ TeV.
|
10
AABOUD 2016H search for production of a scalar resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 12 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.2 - 2$ TeV with different assumptions on the width.
|
11
AABOUD 2016I search for a narrow scalar resonance decaying to ${{\mathit H}^{0}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 3.2 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 10(c) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.5 - 3$ TeV.
|
12
AAD 2016AX search for production of a heavy ${{\mathit H}^{0}}$ state decaying to ${{\mathit Z}}{{\mathit Z}}$ in the final states ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ , ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \nu}}{{\overline{\mathit \nu}}}$ , ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit q}}{{\overline{\mathit q}}}$ , and ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit q}}{{\overline{\mathit q}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig.12 for upper limits on ${\mathit \sigma (}{{\mathit H}^{0}}{)}$ B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}}$ ) for ${\mathit m}_{{{\mathit H}^{0}}}$ ranging from 140 GeV to 1000 GeV.
|
13
AAD 2016C search for production of a heavy ${{\mathit H}^{0}}$ state decaying to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ in the final states ${{\mathit \ell}}{{\mathit \nu}}{{\mathit \ell}}{{\mathit \nu}}$ and ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\mathit q}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Figs. 12, 13, and 16 for upper limits on ${\mathit \sigma (}{{\mathit H}^{0}}{)}$ B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$ ) for ${\mathit m}_{{{\mathit H}^{0}}}$ ranging from 300 GeV to 1000 or 1500 GeV with various assumptions on the total width of ${{\mathit H}^{0}}$.
|
14
AAD 2016L search for the decay ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 4 (upper right) for limits on cross section times branching ratios (normalized to the SM ${{\mathit H}^{0}}$ cross section) for ${\mathit m}_{{{\mathit A}^{0}}}$ = $10 - 60$ GeV.
|
15
AAD 2016L search for the decay ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}{{\mathit \gamma}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 4 (lower right) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = 600 GeV and ${\mathit m}_{{{\mathit A}^{0}}}$ = $10 - 245$ GeV, and Table 5 for limits for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$= 300 and 900 GeV.
|
16
AALTONEN 2016C search for electroweak associated production of ${{\mathit H}_{{1}}^{0}}{{\mathit H}^{\pm}}$ followed by the decays ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit H}_{{1}}^{0}}{{\mathit W}^{*}}$ , ${{\mathit H}_{{1}}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ for ${\mathit m}_{{{\mathit H}_{{1}}^{0}}}$ = $10 - 105$ GeV and ${\mathit m}_{{{\mathit H}^{\pm}}}$ = $30 - 300$ GeV. See their Fig. 3 for excluded parameter region in a two-doublet model in which ${{\mathit H}_{{1}}^{0}}$ has no direct decay to fermions.
|
17
KHACHATRYAN 2016BG search for a narrow scalar resonance decaying to ${{\mathit H}^{0}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on the cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $1.15 - 3$ TeV.
|
18
KHACHATRYAN 2016BQ search for a resonance decaying to ${{\mathit H}^{0}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 9 for limits on the cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.26 - 1.1$ TeV.
|
19
KHACHATRYAN 2016F search for the decay ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit H}_{{1}}^{0}}{{\mathit H}_{{1}}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}$ ${{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 8 for cross section limits for ${\mathit m}_{{{\mathit H}_{{1}}^{0}}}$ = $4 - 8$ GeV.
|
20
KHACHATRYAN 2016M search for production of a narrow resonance decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and 3.3 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 13 TeV. See their Fig. 3 (top) for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.5 - 4$ TeV.
|
21
KHACHATRYAN 2016P search for gluon fusion production of an ${{\mathit H}_{{2}}^{0}}$ decaying to ${{\mathit H}^{0}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 8 (lower right) for cross section limits for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $260 - 350$ GeV.
|
22
KHACHATRYAN 2016P search for gluon fusion production of an ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 10 for cross section limits for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $220 - 350$ GeV.
|
23
AAD 2015BK search for production of a heavy ${{\mathit H}_{{2}}^{0}}$ decaying to ${{\mathit H}^{0}}{{\mathit H}^{0}}$ in the final state ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.5 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 14(c) for ${\mathit \sigma (}{{\mathit H}_{{2}}^{0}}{)}$ B( ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit H}^{0}}$ ) for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $500 - 1500$ GeV with ${\Gamma}_{{\mathit H}_{{2}}^{0}}$ = 1 GeV.
|
24
AAD 2015BZ search for the decay ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ (${\mathit m}_{{{\mathit H}^{0}}}$ = 125 GeV) in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.7 - 50$ GeV.
|
25
AAD 2015BZ search for a state ${{\mathit H}_{{2}}^{0}}$ via the decay ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $100 - 500$ GeV and ${\mathit m}_{{{\mathit A}^{0}}}$ = 5 GeV.
|
26
AAD 2015CE search for production of a heavy ${{\mathit H}_{{2}}^{0}}$ decaying to ${{\mathit H}^{0}}{{\mathit H}^{0}}$ in the final states ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ and ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit W}}{{\mathit W}^{*}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV and combine with data from AAD 2015H and AAD 2015BK. A limit ${\mathit \sigma (}{{\mathit H}_{{2}}^{0}}{)}$ B( ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit H}^{0}}$ ) $<$ $2.1 - 0.011$ pb (95$\%$ CL) is given for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $260 - 1000$ GeV. See their Fig. 6.
|
27
AAD 2015H search for production of a heavy ${{\mathit H}_{{2}}^{0}}$ decaying to ${{\mathit H}^{0}}{{\mathit H}^{0}}$ in the finalstate ${{\mathit \gamma}}{{\mathit \gamma}}{{\mathit b}}{{\overline{\mathit b}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV.A limit of ${\mathit \sigma (}{{\mathit H}_{{2}}^{0}}{)}$ B( ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit H}^{0}}$ ) $<$ $3.5 - 0.7$ pb is given for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $260 - 500$ GeV at 95$\%$ CL. See their Fig. 3.
|
28
AAD 2015S search for production of ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit b}}{{\overline{\mathit b}}}$ and ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 3 for cross section limits for ${\mathit m}_{{{\mathit A}^{0}}}$ = $200 - 1000$ GeV.
|
29
KHACHATRYAN 2015AW search for production of a heavy state ${{\mathit H}_{{2}}^{0}}$ of an electroweak singlet extension of the Standard Model via the decays of ${{\mathit H}_{{2}}^{0}}$ to ${{\mathit W}^{+}}{{\mathit W}^{-}}$ and ${{\mathit Z}}{{\mathit Z}}$ in up to 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and up to 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV in the range ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $145 - 1000$ GeV. See their Figs. 8 and 9 for limits in the parameter space of the model.
|
30
KHACHATRYAN 2015BB search for production of a resonance ${{\mathit H}^{0}}$ decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 7 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{0}}}$ = $150 - 850$ GeV.
|
31
KHACHATRYAN 2015N search for production of ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 3 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $225 - 600$ GeV.
|
32
KHACHATRYAN 2015O search for production of a high-mass narrow resonance ${{\mathit A}^{0}}$ decaying to ${{\mathit Z}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 19.7 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 6 for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit A}^{0}}}$ = $800 - 2500$ GeV.
|
33
KHACHATRYAN 2015R search for a narrow scalar resonance decaying to ${{\mathit H}^{0}}$ ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$ in 17.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 5 (top) for limits on cross section times branching ratios for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$ = $0.27 - 1.1$ TeV.
|
34
AAD 2014AP search for a second ${{\mathit H}^{0}}$ state decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in addition to the state at about 125 GeV in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 4 for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}^{0}}}$ = $65 - 600$ GeV.
|
35
AAD 2014M search for the decay cascade ${{\mathit H}_{{2}}^{0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit W}^{\pm}}{{\mathit W}^{\mp}}$ , ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in 20.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Table III for limits on cross section times branching ratio for ${\mathit m}_{{{\mathit H}_{{2}}^{0}}}$= $325 - 1025$ GeV and ${\mathit m}_{{{\mathit H}^{+}}}$= $225 - 925$ GeV.
|
36
CHATRCHYAN 2014G search for a second ${{\mathit H}^{0}}$ state decaying to ${{\mathit W}}{{\mathit W}^{(*)}}$ in addition to the observed signal at about 125 GeV using 4.9 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.4 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Fig. 21 (right) for cross section limits in the mass range $110 - 600$ GeV.
|
37
KHACHATRYAN 2014P search for a second ${{\mathit H}^{0}}$ state decaying to ${{\mathit \gamma}}{{\mathit \gamma}}$ in addition to the observed signal at about 125 GeV using 5.1 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV and 19.7 fb${}^{-1}$ at $\mathit E_{{\mathrm {cm}}}$ = 8 TeV. See their Figs. 27 and 28 for cross section limits in the mass range $110 - 150$ GeV.
|
38
AALTONEN 2013P search for production of a heavy Higgs boson ${{\mathit H}^{'0}}$ that decays into a charged Higgs boson ${{\mathit H}^{\pm}}$ and a lighter Higgs boson ${{\mathit H}^{0}}$ via the decay chain ${{\mathit H}^{'0}}$ $\rightarrow$ ${{\mathit H}^{\pm}}{{\mathit W}^{\mp}}$ , ${{\mathit H}^{\pm}}$ $\rightarrow$ ${{\mathit W}^{\pm}}{{\mathit H}^{0}}$ , ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ in the final state ${{\mathit \ell}}{{\mathit \nu}}$ plus 4 jets in 8.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. See their Fig. 4 for limits on cross section times branching ratio in the ${\mathit m}_{{{\mathit H}^{\pm}}}−{\mathit m}_{{{\mathit H}^{'0}}}$ plane for ${\mathit m}_{{{\mathit H}^{0}}}$ = 126 GeV.
|
39
CHATRCHYAN 2013BJ search for ${{\mathit H}^{0}}$ production in the decay chain ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in 5.3 fb${}^{-1}$ of ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. See their Fig. 2 for limits on cross section times branching ratio.
|
40
AALTONEN 2011P search in 2.7 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV for the decay chain ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ , ${{\mathit H}^{+}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with ${\mathit m}_{{{\mathit A}^{0}}}$ between 4 and 9 GeV. See their Fig.$~$4 for limits on B( ${{\mathit t}}$ $\rightarrow$ ${{\mathit b}}{{\mathit H}^{+}}$ ) for 90 $<$ ${\mathit m}_{{{\mathit H}^{+}}}<$ 160 GeV.
|
41
ABBIENDI 2010 search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}^{0}}$ with the decay chain ${{\mathit H}^{0}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{1}}^{0}}{{\widetilde{\mathit \chi}}_{{2}}^{0}}$ , ${{\widetilde{\mathit \chi}}_{{2}}^{0}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{1}}^{0}}$ + (${{\mathit \gamma}}$ or ${{\mathit Z}^{*}}$), when ${{\widetilde{\mathit \chi}}_{{1}}^{0}}$ and ${{\widetilde{\mathit \chi}}_{{2}}^{0}}$ are nearly degenerate. For a mass difference of 2 (4) GeV, a lower limit on ${\mathit m}_{{{\mathit H}^{0}}}$ of 108.4 (107.0) GeV (95$\%$ CL) is obtained for SM ${{\mathit Z}}{{\mathit H}^{0}}$ cross section and B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\widetilde{\mathit \chi}}_{{1}}^{0}}{{\widetilde{\mathit \chi}}_{{2}}^{0}}$ ) = 1.
|
42
SCHAEL 2010 search for the process ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit Z}}$ followed by the decay chain ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ with ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ , ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ at $\mathit E_{{\mathrm {cm}}}$ = $183 - 209$ GeV. For a ${{\mathit H}^{0}}{{\mathit Z}}{{\mathit Z}}$ coupling equal to the SM value, B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ ) = B( ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ) = 1, and ${\mathit m}_{{{\mathit A}^{0}}}$ = $4 - 10$ GeV, ${\mathit m}_{{{\mathit H}^{0}}}$ up to 107 GeV is excluded at 95$\%$ CL.
|
43
ABAZOV 2009V search for ${{\mathit H}^{0}}$ production followed by the decay chain ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in 4.2 fb${}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. See their Fig. 3 for limits on $\sigma ({{\mathit H}^{0}})\cdot{}$B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ ) for ${\mathit m}_{{{\mathit A}^{0}}}$ = $3.6 - 19$ GeV.
|
44
ABBIENDI 2005A search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}_{{1}}^{0}}{{\mathit A}^{0}}$ in general Type-II two-doublet models, with decays ${{\mathit H}_{{1}}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ , ${{\mathit g}}{{\mathit g}}$ , ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ , and ${{\mathit H}_{{1}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ .
|
45
ABBIENDI 2004K search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit Z}}$ with ${{\mathit H}^{0}}$ decaying to two jets of any flavor including ${{\mathit g}}{{\mathit g}}$ . The limit is for SM production cross section with B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$ ) = 1.
|
46
ABDALLAH 2004 consider the full combined LEP and LEP2 datasets to set limits on the Higgs coupling to ${{\mathit W}}$ or ${{\mathit Z}}$ bosons, assuming SM decays of the Higgs. Results in Fig. 26.
|
47
ACHARD 2004B search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit Z}}$ with ${{\mathit H}^{0}}$ decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit c}}{{\overline{\mathit c}}}$ , or ${{\mathit g}}{{\mathit g}}$ . The limit is for SM production cross section with B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit j}}{{\mathit j}}$ ) = 1.
|
48
ACHARD 2004F search for ${{\mathit H}^{0}}$ with anomalous coupling to gauge boson pairs in the processes ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit \gamma}}$ , ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit H}^{0}}$ , ${{\mathit H}^{0}}{{\mathit Z}}$ with decays ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit f}}{{\overline{\mathit f}}}$ , ${{\mathit \gamma}}{{\mathit \gamma}}$ , ${{\mathit Z}}{{\mathit \gamma}}$ , and ${{\mathit W}^{*}}{{\mathit W}}$ at $\mathit E_{{\mathrm {cm}}}$ = $189 - 209$ GeV. See paper for limits.
|
49
ABBIENDI 2003F search for ${{\mathit H}^{0}}$ $\rightarrow$ anything in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit Z}}$ , using the recoil mass spectrum of ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ . In addition, it searched for ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ and ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or photons. Scenarios with large width or continuum ${{\mathit H}^{0}}$ mass distribution are considered. See their Figs. 11--14 for the results.
|
50
ABBIENDI 2003G search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}_{{1}}^{0}}{{\mathit Z}}$ followed by ${{\mathit H}_{{1}}^{0}}$ $\rightarrow$ ${{\mathit A}^{0}}{{\mathit A}^{0}}$ , ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit c}}{{\overline{\mathit c}}}$ , ${{\mathit g}}{{\mathit g}}$ , or ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in the region ${\mathit m}_{{{\mathit H}_{{1}}^{0}}}$ = 45-86 GeV and ${\mathit m}_{{{\mathit A}^{0}}}$ = 2-11 GeV. See their Fig. 7 for the limits.
|
51
Search for associated production of a ${{\mathit \gamma}}{{\mathit \gamma}}$ resonance with a ${{\mathit Z}}~$boson, followed by ${{\mathit Z}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ , ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ , or ${{\mathit \nu}}{{\overline{\mathit \nu}}}$ , at $\mathit E_{{\mathrm {cm}}}{}\leq{}$209 GeV. The limit is for a ${{\mathit H}^{0}}$ with SM production cross section and B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit f}}{{\overline{\mathit f}}}$ )=0 for all fermions ${{\mathit f}}$.
|
52
For B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ )=1, ${\mathit m}_{{{\mathit H}^{0}}}>113.1$ GeV is obtained.
|
53
HEISTER 2002M search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit Z}}$ , assuming that ${{\mathit H}^{0}}$ decays to ${{\mathit q}}{{\overline{\mathit q}}}$ , ${{\mathit g}}{{\mathit g}}$ , or ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ only. The limit assumes SM production cross section.
|
54
ABBIENDI 2001E search for neutral Higgs bosons in general Type-II two-doublet models, at $\mathit E_{{\mathrm {cm}}}{}\leq{}$189 GeV. In addition to usual final states, the decays ${{\mathit H}_{{1}}^{0}}$, ${{\mathit A}^{0}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ , ${{\mathit g}}{{\mathit g}}$ are searched for. See their Figs.$~$15,16 for excluded regions.
|
55
ACCIARRI 2000R search for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit \gamma}}$ with ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ , ${{\mathit Z}}{{\mathit \gamma}}$ , or ${{\mathit \gamma}}{{\mathit \gamma}}$ . See their Fig.$~$3 for limits on $\sigma \cdot{}$B. Explicit limits within an effective interaction framework are also given, for which the Standard Model Higgs search results are used in addition.
|
56
ACCIARRI 2000R search for the two-photon type processes ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit H}^{0}}$ with ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ or ${{\mathit \gamma}}{{\mathit \gamma}}$ . See their Fig.$~$4 for limits on $\Gamma\mathrm {( {{\mathit H}^{0}} \rightarrow {{\mathit \gamma}} {{\mathit \gamma}} )}\cdot{}$B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ or ${{\mathit b}}{{\overline{\mathit b}}}$ ) for ${\mathit m}_{{{\mathit H}^{0}}}=70 - 170$ GeV.
|
57
GONZALEZ-GARCIA 1998B use ${D0}$ limit for ${{\mathit \gamma}}{{\mathit \gamma}}$ events with missing $\mathit E_{\mathit T}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions (ABBOTT 1998 ) to constrain possible ${{\mathit Z}}{{\mathit H}}$ or ${{\mathit W}}{{\mathit H}}$ production followed by unconventional ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ decay which is induced by higher-dimensional operators. See their Figs.$~$1 and$~$2 for limits on the anomalous couplings.
|
58
KRAWCZYK 1997 analyse the muon anomalous magnetic moment in a two-doublet Higgs model (with type$~$II Yukawa couplings) assuming no ${{\mathit H}_{{1}}^{0}}{{\mathit Z}}{{\mathit Z}}$ coupling and obtain ${\mathit m}_{{{\mathit H}_{{1}}^{0}}}{ {}\gtrsim{} }5$ GeV or ${\mathit m}_{{{\mathit A}^{0}}}{ {}\gtrsim{} }5$ GeV for tan $\beta >50$. Other Higgs bosons are assumed to be much heavier.
|
59
ALEXANDER 1996H give B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit \gamma}}$ )${\times }$B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$ ) $<1 - 4 \times 10^{-5}$ (95$\%$CL) and B( ${{\mathit Z}}$ $\rightarrow$ ${{\mathit H}^{0}}{{\mathit \gamma}}$ )${\times }$B( ${{\mathit H}^{0}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$ ) $<0.7 - 2 \times 10^{-5}$ (95$\%$CL) in the range 20 $<{\mathit m}_{{{\mathit H}^{0}}}$ $<$80 GeV.
|