MASS LIMITS for Leptoquarks from Pair Production INSPIRE search

These limits rely only on the color or electroweak charge of the leptoquark.

VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$>740$ 95 1
KHACHATRYAN
2017J
CMS Third generation
$\bf{> 850}$ 95 2
SIRUNYAN
2017H
CMS Third generation
$\bf{> 1050}$ 95 3
AAD
2016G
ATLS First generation
$> 1000$ 95 4
AAD
2016G
ATLS Second generation
$> 625$ 95 5
AAD
2016G
ATLS Third generation
$\text{none 200 - 640}$ 95 6
AAD
2016G
ATLS Third generation
$> 1010$ 95 7
KHACHATRYAN
2016AF
CMS First generation
$\bf{> 1080}$ 95 8
KHACHATRYAN
2016AF
CMS Second generation
$> 685$ 95 9
KHACHATRYAN
2015AJ
CMS Third generation
$> 740$ 95 10
KHACHATRYAN
2014T
CMS Third generation
• • • We do not use the following data for averages, fits, limits, etc. • • •
$> 534$ 95 11
AAD
2013AE
ATLS Third generation
$> 525$ 95 12
CHATRCHYAN
2013M
CMS Third generation
$> 660$ 95 13
AAD
2012H
ATLS First generation
$> 685$ 95 14
AAD
2012O
ATLS Second generation
$> 830$ 95 15
CHATRCHYAN
2012AG
CMS First generation
$> 840$ 95 16
CHATRCHYAN
2012AG
CMS Second generation
$> 450$ 95 17
CHATRCHYAN
2012BO
CMS Third generation
$> 376$ 95 18
AAD
2011D
ATLS Superseded by AAD 2012H
$> 422$ 95 19
AAD
2011D
ATLS Superseded by AAD 2012O
$> 326$ 95 20
ABAZOV
2011V
D0 First generation
$> 339$ 95 21
CHATRCHYAN
2011N
CMS Superseded by CHATRCHYAN 2012AG
$> 384$ 95 22
KHACHATRYAN
2011D
CMS Superseded by CHATRCHYAN 2012AG
$> 394$ 95 23
KHACHATRYAN
2011E
CMS Superseded by CHATRCHYAN 2012AG
$> 247$ 95 24
ABAZOV
2010L
D0 Third generation
$> 316$ 95 25
ABAZOV
2009
D0 Second generation
$> 299$ 95 26
ABAZOV
2009AF
D0 Superseded by ABAZOV 2011V
27
AALTONEN
2008P
CDF Third generation
$> 153$ 95 28
AALTONEN
2008Z
CDF Third generation
$> 205$ 95 29
ABAZOV
2008AD
D0 All generations
$> 210$ 95 28
ABAZOV
2008AN
D0 Third generation
$> 229$ 95 30
ABAZOV
2007J
D0 Superseded by ABAZOV 2010L
$> 251$ 95 31
ABAZOV
2006A
D0 Superseded by ABAZOV 2009
$> 136$ 95 32
ABAZOV
2006L
D0 Superseded by ABAZOV 2008AD
$> 226$ 95 33
ABULENCIA
2006T
CDF Second generation
$> 256$ 95 34
ABAZOV
2005H
D0 First generation
$>117$ 95 29
ACOSTA
2005I
CDF First generation
$> 236$ 95 35
ACOSTA
2005P
CDF First generation
$>99$ 95 36
ABBIENDI
2003R
OPAL First generation
$>100$ 95 36
ABBIENDI
2003R
OPAL Second generation
$>98$ 95 36
ABBIENDI
2003R
OPAL Third generation
$>98$ 95 37
ABAZOV
2002
D0 All generations
$>225$ 95 38
ABAZOV
2001D
D0 First generation
$>85.8$ 95 39
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>85.5$ 95 39
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>82.7$ 95 39
ABBIENDI
2000M
OPAL Superseded by ABBIENDI 2003R
$>200$ 95 40
ABBOTT
2000C
D0 Second generation
$>123$ 95 41
AFFOLDER
2000K
CDF Second generation
$> 148$ 95 42
AFFOLDER
2000K
CDF Third generation
$>160$ 95 43
ABBOTT
1999J
D0 Second generation
$>225$ 95 44
ABBOTT
1998E
D0 First generation
$>94$ 95 45
ABBOTT
1998J
D0 Third generation
$> 202$ 95 46
ABE
1998S
CDF Second generation
$>242$ 95 47
GROSS-PILCHER
1998
First generation
$>99$ 95 48
ABE
1997F
CDF Third generation
$>213$ 95 49
ABE
1997X
CDF First generation
$>45.5$ 95 50, 51
ABREU
1993J
DLPH First + second generation
$>44.4$ 95 52
ADRIANI
1993M
L3 First generation
$>44.5$ 95 52
ADRIANI
1993M
L3 Second generation
$>45$ 95 52
DECAMP
1992
ALEP Third generation
$\text{none 8.9 - 22.6}$ 95 53
KIM
1990
AMY First generation
$\text{none 10.2 - 23.2}$ 95 53
KIM
1990
AMY Second generation
$\text{none 5 - 20.8}$ 95 54
BARTEL
1987B
JADE
$\text{none 7 - 20.5}$ 95 55
BEHREND
1986B
CELL
1  KHACHATRYAN 2017J search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
2  SIRUNYAN 2017H search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
3  AAD 2016G search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B$( ${{\mathit e}}{{\mathit q}}$ ) = 1.
4  AAD 2016G search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B$( ${{\mathit \mu}}{{\mathit q}}$ ) = 1.
5  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit b}}{{\mathit \nu}}$ . The limit above assumes $\mathit B$( ${{\mathit b}}{{\mathit \nu}}$ ) = 1.
6  AAD 2016G search for scalar leptoquarks decaying to ${{\mathit t}}{{\mathit \nu}}$ . The limit above assumes $\mathit B$( ${{\mathit t}}{{\mathit \nu}}$ ) = 1.
7  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ )= 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 850 GeV.
8  KHACHATRYAN 2016AF search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 760 GeV.
9  KHACHATRYAN 2015AJ search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit t}}{{\mathit t}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes $\mathit B$( ${{\mathit \tau}}{{\mathit t}}$ ) = 1.
10  KHACHATRYAN 2014T search for scalar leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1. See their Fig. 5 for the exclusion limit as function of B( ${{\mathit \tau}}{{\mathit b}}$ ).
11  AAD 2013AE search for scalar leptoquarks using ${{\mathit \tau}}{{\mathit \tau}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7$~$TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
12  CHATRCHYAN 2013M search for scalar and vector leptoquarks decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above is for scalar leptoquarks with B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
13  AAD 2012H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}$ ${{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 607 GeV.
14  AAD 2012O search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 594 GeV.
15  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 640 GeV.
16  CHATRCHYAN 2012AG search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 650 GeV.
17  CHATRCHYAN 2012BO search for scalar leptoquarks decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1.
18  AAD 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV.The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5, the limit becomes 319 GeV.
19  AAD 2011D search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 362 GeV.
20  ABAZOV 2011V search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5.
21  CHATRCHYAN 2011N search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5.
22  KHACHATRYAN 2011D search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1.
23  KHACHATRYAN 2011E search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 7 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1.
24  ABAZOV 2010L search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1.
25  ABAZOV 2009 search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 270 GeV.
26  ABAZOV 2009AF search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5 the bound becomes 284 GeV.
27  AALTONEN 2008P search for vector leptoquarks using ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit b}}{{\overline{\mathit b}}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. Assuming Yang-Mills (minimal) couplings, the mass limit is $>$317 GeV (251 GeV) at 95$\%$ CL for B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
28  Search for pair production of scalar leptoquark state decaying to ${{\mathit \tau}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= 1.96 TeV. The limit above assumes B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
29  Search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1.
30  ABAZOV 2007J search for pair productions of scalar leptoquark state decaying to ${{\mathit \nu}}{{\mathit b}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96 TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit b}}$ ) = 1.
31  ABAZOV 2006A search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5, the limit becomes 204 GeV.
32  ABAZOV 2006L search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8$~$TeV and at 1.96$~$TeV. The limit above assumes B( ${{\mathit \nu}}{{\mathit q}}$ ) = 1.
33  ABULENCIA 2006T search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96$~$TeV. The quoted limit assumes B( ${{\mathit \mu}}{{\mathit q}}$ ) = 1. For B( ${{\mathit \mu}}{{\mathit q}}$ ) = 0.5 or 0.1, the bound becomes 208$~$GeV or 143$~$GeV, respectively. See their Fig.$~$4 for the exclusion limit as a function of B( ${{\mathit \mu}}{{\mathit q}}$ ).
34  ABAZOV 2005H search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ and ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.8 TeV and 1.96 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5 the bound becomes 234 GeV.
35  ACOSTA 2005P search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = 1.96TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ ) = 1. For B( ${{\mathit e}}{{\mathit q}}$ ) = 0.5 and 0.1, the bound becomes 205 GeV and 145 GeV, respectively.
36  ABBIENDI 2003R search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = $189 - 209$ GeV. The quoted limits are for charge $−$4/3 isospin 0 scalar-leptoquark with B( ${{\mathit \ell}}{{\mathit q}}$ ) = 1. See their table 12 for other cases.
37  ABAZOV 2002 search for scalar leptoquarks using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\overline{\mathit p}}}{{\mathit p}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The bound holds for all leptoquark generations. Vector leptoquarks are likewise constrained to lie above 200 GeV.
38  ABAZOV 2001D search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ )=1. For B( ${{\mathit e}}{{\mathit q}}$ )=$0.5$ and 0, the bound becomes 204 and 79$~$GeV, respectively. Bounds for vector leptoquarks are also given. Supersedes ABBOTT 1998E.
39  ABBIENDI 2000M search for scalar/vector leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {\mathit s }$=183 GeV. The quoted limits are for charge $-4$/3 isospin$~$0 scalar-leptoquarks with B( ${{\mathit \ell}}{{\mathit q}}$ )=1. See their Table$~$8 and Figs.$~6 - 9$ for other cases.
40  ABBOTT 2000C search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$=1.8 TeV. The limit above assumes B( ${{\mathit \mu}}{{\mathit q}}$ )=1. For B( ${{\mathit \mu}}{{\mathit q}}$ )=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also given.
41  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit c}}{{\mathit c}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B( ${{\mathit \nu}}{{\mathit c}}$ )=1. Bounds for vector leptoquarks are also given.
42  AFFOLDER 2000K search for scalar leptoquark using ${{\mathit \nu}}{{\mathit \nu}}{{\mathit b}}{{\mathit b}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8~$TeV. The quoted limit assumes B( ${{\mathit \nu}}{{\mathit b}}$ )=1. Bounds for vector leptoquarks are also given.
43  ABBOTT 1999J search for leptoquarks using ${{\mathit \mu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$TeV. The quoted limit is for a scalar leptoquark with B( ${{\mathit \mu}}{{\mathit q}}$ ) = B( ${{\mathit \nu}}{{\mathit q}}$ ) = $0.5$. Limits on vector leptoquarks range from 240 to 290 GeV.
44  ABBOTT 1998E search for scalar leptoquarks using ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ , ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ , and ${{\mathit \nu}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit above assumes B( ${{\mathit e}}{{\mathit q}}$ )=1. For B( ${{\mathit e}}{{\mathit q}}$ )=$0.5$ and 0, the bound becomes 204 and 79 GeV, respectively.
45  ABBOTT 1998J search for charge $−$1/3 third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8$ TeV. The quoted limit is for scalar leptoquark with B( ${{\mathit \nu}}{{\mathit b}}$ )=1.
46  ABE 1998S search for scalar leptoquarks using ${{\mathit \mu}}{{\mathit \mu}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$= $1.8~$TeV. The limit is for B( ${{\mathit \mu}}{{\mathit q}}$ )= 1. For B( ${{\mathit \mu}}{{\mathit q}}$ )=B( ${{\mathit \nu}}{{\mathit q}}$ )=$0.5$, the limit is $>160$ GeV.
47  GROSS-PILCHER 1998 is the combined limit of the CDF and ${D0}$ Collaborations as determined by a joint CDF/${D0}$ working group and reported in this FNAL Technical Memo. Original data published in ABE 1997X and ABBOTT 1998E.
48  ABE 1997F search for third generation scalar and vector leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}$ = $1.8$ TeV. The quoted limit is for scalar leptoquark with B( ${{\mathit \tau}}{{\mathit b}}$ ) = 1.
49  ABE 1997X search for scalar leptoquarks using ${{\mathit e}}{{\mathit e}}{{\mathit j}}{{\mathit j}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\mathit E_{{\mathrm {cm}}}=1.8$ TeV. The limit is for B( ${{\mathit e}}{{\mathit q}}$ )=1.
50  Limit is for charge $−$1/3 isospin-0 leptoquark with B( ${{\mathit \ell}}{{\mathit q}}$ ) = 2/3.
51  First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
52  Limits are for charge $−$1/3, isospin-0 scalar leptoquarks decaying to ${{\mathit \ell}^{-}}{{\mathit q}}$ or ${{\mathit \nu}}{{\mathit q}}$ with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
53  KIM 1990 assume pair production of charge 2/3 scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of ${{\mathit d}}{{\mathit e}^{+}}$ and ${{\mathit u}}{{\overline{\mathit \nu}}}$ ( ${{\mathit s}}{{\mathit \mu}^{+}}$ and ${{\mathit c}}{{\overline{\mathit \nu}}}$ ). See paper for limits for specific branching ratios.
54  BARTEL 1987B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint B( X $\rightarrow$ ${{\mathit c}}{{\overline{\mathit \nu}}_{{\mu}}}$ ) $+$ B( X $\rightarrow$ ${{\mathit s}}{{\mathit \mu}^{+}}$ ) = 1.
55  BEHREND 1986B assumed that a charge 2/3 spinless leptoquark, ${{\mathit \chi}}$, decays either into ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$ or ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$ : B( ${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit s}}$ ${{\mathit \mu}^{+}}$ ) $+$ B( ${{\mathit \chi}}$ $\rightarrow$ ${\mathit {\mathit c}}$ ${{\overline{\mathit \nu}}}$ ) = 1.
  References:
KHACHATRYAN 2017J
JHEP 1703 077 Search for Heavy Neutrinos or Third-Generation Leptoquarks in Final States with Two Hadronically Decaying ${{\mathit \tau}}$ Leptons and Two Jets in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
SIRUNYAN 2017H
JHEP 1707 121 Search for Third-Generation Scalar Leptoquarks and Heavy Right-Handed Neutrinos in Final States with Two Tau Leptons and Two Jets in Proton-Proton Collisions at $\sqrt {s }$ = 13 TeV
AAD 2016G
EPJ C76 5 Searches for Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 8 TeV with the ATLAS Detector
KHACHATRYAN 2016AF
PR D93 032004 Search for Pair Production of First and Second Generation Leptoquarks in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2015AJ
JHEP 1507 042 Search for Third-Generation Scalar Leptoquarks in the ${\mathit {\mathit t}}{{\mathit \tau}}$ Channel in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
KHACHATRYAN 2014T
PL B739 229 Search for Pair Production of Third-Generation Scalar Leptoquarks and Top squarks in Proton-Proton Collisions at $\sqrt {s }$ = 8 TeV
AAD 2013AE
JHEP 1306 033 Search for Third Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
CHATRCHYAN 2013M
PRL 110 081801 Search for Pair Production of Third-Generation Leptoquarks and Top Squarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
AAD 2012H
PL B709 158 Search for First Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
AAD 2012O
EPJ C72 2151 Search for Second Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV with the ATLAS Detector
CHATRCHYAN 2012AG
PR D86 052013 Search for Pair Production of First- and Second-Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
CHATRCHYAN 2012BO
JHEP 1212 055 Search for Third-Generation Leptoquarks and Scalar Bottom Quarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
AAD 2011D
PR D83 112006 Search for Pair Production of First or Second Generation Leptoquarks in Proton$−$Proton Collisions at $\sqrt {s }$ = 7 TeV using the ATLAS Detector at the LHC
ABAZOV 2011V
PR D84 071104 Search for First Generation Leptoquark Pair Production in the Electron + Missing Energy + Jets Final State
CHATRCHYAN 2011N
PL B703 246 Search for First Generation Scalar Leptoquarks in the ${{\mathit e}}{{\mathit \nu}}{{\mathit j}}{{\mathit j}}$ Channel in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
KHACHATRYAN 2011D
PRL 106 201802 Search for Pair Production of First-Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
KHACHATRYAN 2011E
PRL 106 201803 Search for Pair Production of Second-Generation Scalar Leptoquarks in ${{\mathit p}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 7 TeV
ABAZOV 2010L
PL B693 95 Search for Scalar Bottom Quarks and Third-Generation Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2009
PL B671 224 Search for Pair Production os Second Generation Scalar Leptoquarks
ABAZOV 2009AF
PL B681 224 Search for Pair Production of First-Generation Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96$~$TeV
AALTONEN 2008P
PR D77 091105 Search for Third Generation Vector Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
AALTONEN 2008Z
PRL 101 071802 Search for Pair Production of Scalar Top Quarks Decaying to a ${{\mathit \tau}}$ Lepton and a ${\mathit {\mathit b}}$ Quark in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2008AD
PL B668 357 Search for Scalar Leptoquarks and T-odd Quarks in the Acoplanar Jet Topology using 2.5 ${\mathrm {fb}}{}^{-1}$ of ${{\mathit p}}{{\overline{\mathit p}}}$ Collision Data at $\sqrt {s }$ = 1.96$~$TeV
ABAZOV 2008AN
PRL 101 241802 Search for Third Generation Scalar Leptoquarks Decaying into ${{\mathit \tau}}{{\mathit b}}$
ABAZOV 2007J
PRL 99 061801 Search for Third-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2006A
PL B636 183 Search for Pair Production of Second Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2006L
PL B640 230 Search for Scalar Leptoquarks in the Acoplanar Jet Topology in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABULENCIA 2006T
PR D73 051102 Search for Second-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABAZOV 2005H
PR D71 071104 Search for First-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ACOSTA 2005P
PR D72 051107 Search for First-Generation Scalar Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ACOSTA 2005I
PR D71 112001 Search for Scalar Leptoquark Pairs Decaying to ${{\mathit \nu}}{{\overline{\mathit \nu}}}{{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.96 TeV
ABBIENDI 2003R
EPJ C31 281 Search for Pair Produced Leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Interactions at $\sqrt {s }$ $\approx{}$ 189 to 209 GeV
ABAZOV 2002
PRL 88 191801 Search for Leptoquark Pairs Decaying to ${{\mathit \nu}}{{\mathit \nu}}{+}$ jets in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABAZOV 2001D
PR D64 092004 Search for First Generation Scalar and Vector Leptoquarks
ABBIENDI 2000M
EPJ C13 15 Search for Pair-Produced Leptoquarks in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Interactions at $\sqrt {s }$ $\approx{}$ 183 GeV
ABBOTT 2000C
PRL 84 2088 Search for Second Generation Leptoquark Pairs in ${{\overline{\mathit p}}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
AFFOLDER 2000K
PRL 85 2056 Search for Second and Third Generation Leptoquarks Including Production via Technicolor Interactions in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABBOTT 1999J
PRL 83 2896 Search for Second Generation Leptoquark Pairs Decaying to ${{\mathit \nu}_{{\mu}}}$ + jets in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABBOTT 1998J
PRL 81 38 Search for Charge 1/3 Third Generation Leptoquarks in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABBOTT 1998E
PRL 80 2051 Search for First Generation Scalar Leptoquark Pairs in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABE 1998S
PRL 81 4806 Search for Second Generation Leptoquarks in the Dimuon Plus Dijet Channel of ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
GROSS-PILCHER 1998
hep-ex/9810015 Combined Limits on first Generation Leptoquarks from the CDF and ${D0}$ Experiments
ABE 1997X
PRL 79 4327 Search for First Generation Leptoquark Pair Production in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABE 1997F
PRL 78 2906 Search for Third Generation Leptoquarks in ${{\overline{\mathit p}}}{{\mathit p}}$ Collisions at $\sqrt {s }$ = 1.8 TeV
ABREU 1993J
PL B316 620 Limits on the Production of Scalar Leptoquarks from ${{\mathit Z}^{0}}$ Decays at LEP
ADRIANI 1993M
PRPL 236 1 Results from the L3 Experiment at LEP
DECAMP 1992
PRPL 216 253 Searches for New Particles in ${{\mathit Z}}$ Decays using the ALEPH Detector
KIM 1990
PL B240 243 A Search for Leptoquark and Colored Lepton Pair Production in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Annihilations at TRISTAN
BARTEL 1987B
ZPHY C36 15 Search for Leptoquarks and other New Particles with Lepton Hadron Signature in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ Interactions
BEHREND 1986B
PL B178 452 Search for Light Leptoquark Bosons
ABAZOV 2002G
PR D66 112001 Search for MSUGRA in Single Electron Events with Jets and Large Missing Transverse Energy in ${{\mathit p}}{{\overline{\mathit p}}}$ Collisions at $\sqrt {s }$ = 1.8-TeV
ABAZOV 2009AK
PRL 103 231802 Direct Measurement of the $\mathit W$ Boson Width