Limits for other ${{\mathit Z}^{\,'}}$

INSPIRE   JSON  (beta) PDGID:
S056ZOT
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\text{none 300 - 3200}$ 95 1
AAD
2023O
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
$\text{none 1800 - 2400}$ 95 2
TUMASYAN
2023AF
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$\text{none 1300 - 3100, 3300 - 3500}$ 95 3
TUMASYAN
2023AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$>3900$ 95 4
TUMASYAN
2023AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$
$> 4000$ 95 5
TUMASYAN
2022D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 800 - 3700}$ 95 6
SIRUNYAN
2021X
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 2650$ 95 7
AAD
2020AJ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 3900$ 95 8
AAD
2020AM
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 3900$ 95 9
AAD
2020AT
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 1200 - 3500}$ 95 10
SIRUNYAN
2020Q
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 580 - 3100}$ 95 11
AABOUD
2019AS
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{none 1300 - 3100}$ 95 12
AAD
2019D
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 3800$ 95 13
SIRUNYAN
2019AA
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 3700$ 95 14
SIRUNYAN
2019CP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$, ${{\mathit H}}{{\mathit Z}},{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
$> 1800$ 95 15
SIRUNYAN
2019I
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 600 - 2100}$ 95 16
AABOUD
2018AB
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$\text{none 500 - 2830}$ 95 17
AABOUD
2018AI
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 300 - 3000}$ 95 18
AABOUD
2018AK
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 1300$ 95 19
AABOUD
2018B
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$\text{none 400 - 3000}$ 95 20
AABOUD
2018BI
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{none 1200 - 2800}$ 95 21
AABOUD
2018F
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$> 2300$ 95 22
SIRUNYAN
2018ED
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 1200 - 2700}$ 95 23
SIRUNYAN
2018P
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
$>2900$ 95 24
AABOUD
2017AK
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1100 - 2600}$ 95 25
AABOUD
2017AO
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$>2300$ 95 26
SIRUNYAN
2017AK
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$ , ${{\mathit H}}{{\mathit Z}}$
$> 2500$ 95 27
SIRUNYAN
2017Q
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$>1190$ 95 28
SIRUNYAN
2017R
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$\text{none 1210 - 2260}$ 95 28
SIRUNYAN
2017R
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
• • We do not use the following data for averages, fits, limits, etc. • •
29
AAD
2024AA
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}_{{{d}}}}{{\overline{\mathit q}}_{{{d}}}}$
$> 4400$ 95 30
AAD
2024AE
ATLS $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$
31
AAD
2024AY
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
32
AAD
2024BJ
ATLS top-philic ${{\mathit Z}^{\,'}}$
33
AAD
2024BR
ATLS ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$
34
AAD
2024CD
ATLS DM simplified ${{\mathit Z}^{\,'}}$
35
AAD
2024CI
ATLS DM simplified ${{\mathit Z}^{\,'}}$
36
AAD
2024CM
ATLS Dark ${{\mathit \rho}_{{{D}}}^{0}}$
37
ABLIKIM
2024G
BES3 ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit Z}^{\,'}}$
38
ADACHI
2024F
BEL2 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit Z}^{\,'}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
39
AKITA
2024
ASTR SN1987A
40
ANDREEV
2024
NA64 ${{\mathit \mu}}$-nucleus scattering
41
ANDREEV
2024B
NA64 ${{\mathit e}}$-nucleus scattering
42
ANDREEV
2024E
NA64 ${{\mathit \mu}}$-nucleus scattering
43
BISWAS
2024
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}{{\mathit \phi}}$( $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$)
44
HAYRAPETYAN
2024AZ
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit s}_{{{D}}}}{{\overline{\mathit s}}_{{{D}}}}$ $\rightarrow$ 4 ${{\mathit \mu}}$
45
HAYRAPETYAN
2024G
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit g}}{{\mathit g}}{{\mathit g}}$
46
HAYRAPETYAN
2024W
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}{{\mathit S}}$ , ${{\mathit S}}$ $\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$
47
AAD
2023BF
ATLS DM simplified ${{\mathit Z}^{\,'}}$
48
AAD
2023W
ATLS dark Higgs ${{\mathit Z}^{\,'}}$
49
AAD
2023X
ATLS ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$
50
ADACHI
2023B
BEL2 ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$
51
ADACHI
2023F
BEL2 ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$
52
HAYRAPETYAN
2023D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
53
HAYRAPETYAN
2023G
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
54
LI
2023I
ASTR Steller cooling
55
MANZARI
2023
ASTR DM mediator ${{\mathit Z}^{\,'}}$
56
AAD
2022
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit b}}{{\overline{\mathit b}}}$
57
AAD
2022D
ATLS DM mediator ${{\mathit Z}^{\,'}}$
58
ANDREEV
2022
CALO electron beam dump
59
BONET
2022
HPGE ${{\mathit \nu}}$-nucleus scattring
60
COLOMA
2022
RVUE ${{\mathit \nu}}$-nucleus scattering
61
COLOMA
2022A
RVUE ${{\mathit \nu}}-{{\mathit e}}$ scattering
62
CZANK
2022
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit Z}^{\,'}}(\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$)
63
TUMASYAN
2022AA
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$SVJs
64
AAD
2021AQ
ATLS ${{\mathit p}}{{\mathit p}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
65
AAD
2021AZ
ATLS DM mediator ${{\mathit Z}^{\,'}}$
66
AAD
2021BB
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit A}}{{\mathit H}}$
67
AAD
2021D
ATLS dark Higgs ${{\mathit Z}^{\,'}}$
68
AAD
2021K
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$
69
BURAS
2021
RVUE leptophilic ${{\mathit Z}^{\,'}}$
70
CADEDDU
2021
RVUE ${{\mathit \nu}}$-nucleus scattering
71
COLARESI
2021
HPGE ${{\mathit \nu}}$-nucleus scattering
72
KRIBS
2021
RVUE ${{\mathit e}}{{\mathit p}}$ scattering
73
TUMASYAN
2021D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$
74
AAD
2020AF
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$
75
AAD
2020T
ATLS DM simplified ${{\mathit Z}^{\,'}}$
76
AAD
2020W
ATLS DM simplified ${{\mathit Z}^{\,'}}$
77
AAIJ
2020AL
LHCB ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
78
ADACHI
2020
BEL2 ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit Z}^{\,'}}$ , ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}{{\mathit Z}^{\,'}}$
79
SIRUNYAN
2020AI
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
80
SIRUNYAN
2020AQ
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
81
SIRUNYAN
2020M
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
82
AABOUD
2019AJ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
83
AABOUD
2019D
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
84
AABOUD
2019V
ATLS DM simplified ${{\mathit Z}^{\,'}}$
85
AAD
2019L
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ , ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
86
LONG
2019
RVUE Electroweak
87
PANDEY
2019
RVUE neutrino NSI
88
SIRUNYAN
2019AL
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\mathit T}}$ , ${{\mathit T}}$ $\rightarrow$ ${{\mathit H}}{{\mathit t}}$ , ${{\mathit Z}}{{\mathit t}}$ , ${{\mathit W}}{{\mathit b}}$
89
SIRUNYAN
2019AN
CMS DM simplified ${{\mathit Z}^{\,'}}$
90
SIRUNYAN
2019CB
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
91
SIRUNYAN
2019CD
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
92
SIRUNYAN
2019D
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$
93
AABOUD
2018AA
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit \gamma}}$
$> 4500$ 95 94
AABOUD
2018CJ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}},{{\mathit H}}{{\mathit Z}}$, ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
95
AABOUD
2018N
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
96
AAIJ
2018AQ
LHCB ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
97
SIRUNYAN
2018DR
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$
98
SIRUNYAN
2018G
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
99
SIRUNYAN
2018I
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$> 1580$ 95 100
AABOUD
2017B
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
101
KHACHATRYAN
2017AX
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}{{\mathit \ell}}$
102
KHACHATRYAN
2017U
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 1700$ 95 103
SIRUNYAN
2017A
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$
104
SIRUNYAN
2017AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit A}}$
105
SIRUNYAN
2017T
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
106
SIRUNYAN
2017V
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit T}}{{\mathit t}}$
$\text{none 1100 - 1500}$ 95 107
AABOUD
2016
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
108
AAD
2016L
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit a}}{{\mathit \gamma}}$ , ${{\mathit a}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$
$\text{none 1500 - 2600}$ 95 109
AAD
2016S
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit q}}{{\overline{\mathit q}}}$
$\text{none 1000 - 1100, none 1300 - 1500}$ 95 110
KHACHATRYAN
2016AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
$> 2400$ 95 111
KHACHATRYAN
2016E
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
112
AAD
2015AO
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
113
AAD
2015AT
ATLS monotop
114
AAD
2015CD
ATLS ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{\,'}}$ , ${{\mathit Z}^{\,'}}{{\mathit Z}^{\,'}}$; ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
115
KHACHATRYAN
2015F
CMS monotop
116
KHACHATRYAN
2015O
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit Z}}$
117
AAD
2014AT
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}}$
118
KHACHATRYAN
2014A
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit V}}{{\mathit V}}$
119
MARTINEZ
2014
RVUE Electroweak
$\text{none 500 - 1740}$ 95 120
AAD
2013AQ
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$\text{>1320 or 1000 - 1280}$ 95 121
AAD
2013G
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$>915$ 95 121
AALTONEN
2013A
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 1300$ 95 122
CHATRCHYAN
2013AP
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 2100$ 95 121
CHATRCHYAN
2013BM
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
123
AAD
2012BV
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
124
AAD
2012K
ATLS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
125
AALTONEN
2012AR
CDF Chromophilic
126
AALTONEN
2012N
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit u}}$
$> 835$ 95 127
ABAZOV
2012R
D0 ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
128
CHATRCHYAN
2012AI
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit u}}}$
129
CHATRCHYAN
2012AQ
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
$> 1490$ 95 121
CHATRCHYAN
2012BL
CMS ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
130
AALTONEN
2011AD
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
131
AALTONEN
2011AE
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
132
CHATRCHYAN
2011O
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\mathit t}}$
133
AALTONEN
2008D
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
133
AALTONEN
2008Y
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
133
ABAZOV
2008AA
D0 ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$
134
ABAZOV
2004A
D0 Repl. by ABAZOV 2008AA
135
BARGER
2003B
COSM Nucleosynthesis; light ${{\mathit \nu}_{{{R}}}}$
136
CHO
2000
RVUE $\mathit E_{6}$-motivated
137
CHO
1998
RVUE $\mathit E_{6}$-motivated
138
ABE
1997G
CDF ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit q}}}{{\mathit q}}$
1  AAD 2023O search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
2  TUMASYAN 2023AF search for resonance decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 4 for limits on $\sigma \cdot{}B$.
3  TUMASYAN 2023AP search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 4.8 TeV assuming $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$ and combining ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit Z}}$, ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit H}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit W}}{{\mathit W}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit H}}$ channels.
4  TUMASYAN 2023AP search for resonances decaying to $ZH$ in $pp$ collisions at $\sqrt{s}=13\,$TeV. The limit quoted above is for heavy-vector-triplet $Z'$ with $g_V=3$. The limit becomes $M_{Z'}>4.8$~TeV assuming $M_{W'}=M_{Z'}$ and combining $W'\to WZ$, $W'\to WH$, $Z'\to WW$, $Z'\to ZH$ channels.
5  TUMASYAN 2022D search for resonances produced through Drell-Yan and vector-boson-fusion processes in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits on $\sigma \cdot{}B$. The quoted limit is for heavy-vector-triplet ${{\mathit W}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3 produced mainly via Drell-Yan.
6  SIRUNYAN 2021X search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
7  AAD 2020AJ search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes M$_{{{\mathit Z}^{\,'}}}$ $>$ 2200 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 6 for limits on $\sigma \cdot{}B$.
8  AAD 2020AM search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a leptophobic top-color ${{\mathit Z}^{\,'}}$ with ${\Gamma}_{{\mathit Z}^{\,'}}/M_{{{\mathit Z}^{\,'}}}$ = 0.01. The limit becomes M$_{{{\mathit Z}^{\,'}}}$ $>$ 4700 GeV for ${\Gamma}_{{\mathit Z}^{\,'}}/M_{{{\mathit Z}^{\,'}}}$ = 0.03.
9  AAD 2020AT search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig. 14 for limits on $\sigma \cdot{}B$.
10  SIRUNYAN 2020Q search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3.
11  AABOUD 2019AS search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a top-color ${{\mathit Z}^{\,'}}$ with $\Gamma _{{{\mathit Z}^{\,'}}}/\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01. Limits are also set on ${{\mathit Z}^{\,'}}$ masses in simplified Dark Matter models.
12  AAD 2019D search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2900 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3800 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig. 9 for limits on $\sigma \cdot{}B$.
13  SIRUNYAN 2019AA search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a leptophobic top-color ${{\mathit Z}^{\,'}}$ with $\Gamma _{{{\mathit Z}^{\,'}}}/\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01.
14  SIRUNYAN 2019CP present a statistical combinations of searches for ${{\mathit Z}^{\,'}}$ decaying to pairs of bosons or leptons in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If we assume ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit W}^{\,'}}}$, the limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 4500 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $>$ 5000 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Figs. 2 and 3 for limits on $\sigma \cdot{}B$.
15  SIRUNYAN 2019I search for resonances decaying to ${{\mathit Z}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV if we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$.
16  AABOUD 2018AB search for resonances decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ with SM-like couplings to quarks. See their Fig. 6 for limits on $\sigma \cdot{}B$. Additional limits on a ${{\mathit Z}^{\,'}}$ axial-vector mediator in a simplified dark-matter model are shown in Fig. 7.
17  AABOUD 2018AI search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2650 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit W}^{\,'}}}$ = $\mathit M_{{{\mathit Z}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2930 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig. 5 for limits on $\sigma \cdot{}\mathit B$.
18  AABOUD 2018AK search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ =1 3 TeV. The limit quoted above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2750 GeV for ${{\mathit g}_{{{V}}}}$ = 1.
19  AABOUD 2018B search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.11 for limits on $\sigma \cdot{}{{\mathit B}}$.
20  AABOUD 2018BI search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for a top-color assisted TC ${{\mathit Z}^{\,'}}$ with $\Gamma _{{{\mathit Z}^{\,'}}}/\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01. The limits for wider resonances are available. See their Fig. 14 for limits on $\sigma \cdot{}{{\mathit B}}$.
21  AABOUD 2018F search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2200 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3500 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3100 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.5 for limits on $\sigma \cdot{}{{\mathit B}}$.
22  SIRUNYAN 2018ED search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit above is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2900 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2800 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively.
23  SIRUNYAN 2018P give this limit for a heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. If they assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases to $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 3800 GeV.
24  AABOUD 2017AK search for a new resonance decaying to dijets in $pp$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ boson having axial-vector coupling strength with quarks ${{\mathit g}_{{{q}}}}$ = 0.2. The limit is 2100 GeV if ${{\mathit g}_{{{q}}}}$ = 0.1.
25  AABOUD 2017AO search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a ${{\mathit Z}^{\,'}}$ in the heavy-vector-triplet model with ${{\mathit g}_{{{V}}}}$ = 3. See their Fig.4 for limits on $\sigma \cdot{}{{\mathit B}}$.
26  SIRUNYAN 2017AK search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ or ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 and 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2200 GeV for ${{\mathit g}_{{{V}}}}$ =1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2400 GeV for both ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.1 and 2 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
27  SIRUNYAN 2017Q search for a resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a resonance with relative width $\Gamma _{{{\mathit Z}^{\,'}}}$ $/$ $\mathit M_{{{\mathit Z}^{\,'}}}$ = 0.01. Limits for wider resonances are available. See their Fig.6 for limits on $\sigma \cdot{}\mathit B$.
28  SIRUNYAN 2017R search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. Mass regions $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 1150 GeV and 1250 GeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 1670 GeV are excluded for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the excluded mass regions are 1000 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 2500 GeV and 2760 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 3300 GeV for ${{\mathit g}_{{{V}}}}$ = 3; 1000 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 2430 GeV and 2810 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 3130 GeV for ${{\mathit g}_{{{V}}}}$ = 1. See their Fig.5 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
29  AAD 2024AA search for ${{\mathit Z}^{\,'}}$ production in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as SM particles. The dark pions are either assumed to decay directly to SM quarks or through dark photons. See their Fig. 7 for limits on $\sigma \cdot{}B$.
30  AAD 2024AE search for resonances decaying to ${{\mathit q}}{{\mathit q}}$, ${{\mathit t}}{{\mathit t}}$, ${{\mathit t}}{{\mathit b}}$, ${{\mathit V}}{{\mathit V}}$, ${{\mathit V}}{{\mathit H}}$, ${{\mathit \ell}}{{\mathit \ell}}$, ${{\mathit \ell}}{{\mathit \tau}}$, ${{\mathit \tau}}{{\mathit \nu}}$, ${{\mathit \tau}}{{\mathit \tau}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$ is assumed. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 5.8 TeV for ${{\mathit g}_{{{V}}}}$ = 1.
31  AAD 2024AY search for a low-mass leptophobic ${{\mathit Z}^{\,'}}$ produced in association of high $p_T$ ISR photon or jet in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The ${{\mathit Z}^{\,'}}$ coupling with quarks ${{\mathit g}_{{{q}}}}$ is constrained below 0.07 for 250 $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 650 GeV. See their Fig. 8 for exclusion limit in the mass-coupling plane.
32  AAD 2024BJ search for top-philic ${{\mathit Z}^{\,'}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9 for limits on ${\mathit \sigma (}{{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}$( ${{\overline{\mathit t}}}$) ${{\mathit Z}^{\,'}}{)}\cdot{}B({{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit t}}{{\overline{\mathit t}}}$).
33  AAD 2024BR search for ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}{{\mathit Z}^{\,'}}$ in 3 ${{\mathit \mu}}$ final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Limits are combined with previous search results in the 4 ${{\mathit \mu}}$ final states reported in AAD 2023X. See their Fig. 4 for limits in mass-coupling plane.
34  AAD 2024CD search for a DM simplified ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit W}}$ or ${{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly. See their Fig. 13 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{DM}}}}$ plane.
35  AAD 2024CI give a summary of searches for DM simplified ${{\mathit Z}^{\,'}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Figs. $6 - 11$ for the limits.
36  AAD 2024CM search for pair productions of dark pions ${{\mathit \pi}_{{{D}}}^{+}}{{\mathit \pi}_{{{D}}}^{-}}$ in ${{\mathit t}}{{\mathit t}}{{\mathit b}}{{\mathit b}}$ events of ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit \pi}_{{{D}}}^{\pm}}$ $\rightarrow$ ${{\mathit t}}{{\mathit b}}$ decay is assumed. The production cross section is computed in a model with dark ${{\mathit \rho}_{{{D}}}^{0}}$ assuming dark isospin symmetry ${\mathit m}_{{{\mathit \rho}_{{{D}}}^{\pm}}}$ = ${\mathit m}_{{{\mathit \rho}_{{{D}}}^{0}}}$, ${\mathit m}_{{{\mathit \pi}_{{{D}}}^{\pm}}}$ = ${\mathit m}_{{{\mathit \pi}_{{{D}}}^{0}}}$. See their Fig. 12 for limits on the production cross sections.
37  ABLIKIM 2024G search for a muonphilic ${{\mathit Z}^{\,'}}$ and a muonphilic scalar ${{\mathit X}_{{{0}}}}$ in decays of ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ + invisible. See their Fig. 3 for limits in the mass coupling plane.
38  ADACHI 2024F for a muonphilic ${{\mathit Z}^{\,'}}$ and a muonphilic scalar ${{\mathit X}_{{{0}}}}$ in ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ events of ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = 10.58 GeV. See their Fig. 14 for limits in mass-coupling plane.
39  AKITA 2024 limit is from no events of high-energy SN1987A neutrinos. The ${{\mathit Z}^{\,'}}$ coupling down to $\mathit g$ $\sim{}3 \times 10^{-10}$ is excluded for $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 400 MeV in the ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}{{\mathit Z}^{\,'}}$ model. See their Fig. 3 and Fig. 4 for exclusion limits in mass-coupling plane.
40  ANDREEV 2024 search for ${{\mathit Z}^{\,'}}$ production in ${{\mathit \mu}}$-nucleus scattering. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly. See their Fig. 4 for limits in mass-coupling plane.
41  ANDREEV 2024B search for ${{\mathit Z}^{\,'}}$ production in ${{\mathit e}^{\pm}}$-nucleus scattering. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly. See their Fig. 4 for limits in mass-coupling plane.
42  ANDREEV 2024E search for ${{\mathit Z}^{\,'}}$ production in ${{\mathit \mu}}$-nucleus scattering. Invisible decays of ${{\mathit Z}^{\,'}}$ are assumed. See their Fig. 17 and Fig. 19 for limits in mass-coupling plane for ${{\mathit Z}^{\,'}}$ masses from 0.001 to 1 GeV.
43  BISWAS 2024 search for leptophilic scalar ${{\mathit X}_{{{0}}}}$ produced in association with ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions near $\sqrt {s }$ = 10.58 GeV. ${{\mathit X}_{{{0}}}}$ is assumed to decay into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. See their Fig. 7 for limits in mass-coupling plane.
44  HAYRAPETYAN 2024AZ search for ${{\mathit Z}^{\,'}}$ resonances produced via kinetic mixing parameter ${{\mathit \epsilon}}$ and decaying to ${{\mathit s}_{{{D}}}}{{\overline{\mathit s}}_{{{D}}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Both ${{\mathit s}_{{{D}}}}$ and ${{\overline{\mathit s}}_{{{D}}}}$ are assumed to decay into ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. See their Fig. 7 for limits on ${{\mathit \epsilon}^{2}}B({{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit s}_{{{D}}}}{{\overline{\mathit s}}_{{{D}}}})B{}^{2}({{\mathit s}_{{{D}}}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$).
45  HAYRAPETYAN 2024G search for singly produced narrow resonances decaying to ${{\mathit j}}{{\mathit j}}{{\mathit j}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 2 for limits on $\sigma \cdot{}B$.
46  HAYRAPETYAN 2024W search for ${{\mathit W}^{+}}{{\mathit W}^{-}}$ + $\not E_T$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into dark Higgs ${{\mathit S}}$ ($\rightarrow$ ${{\mathit W}^{+}}{{\mathit W}^{-}}$) and DM particles ${{\mathit \chi}}{{\mathit \chi}}$. See their Fig. 5 for exclusion limits on the production cross section.
47  AAD 2023BF search for a Dark Matter (DM) simplified ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 9(c) for limits on $\sigma \cdot{}B$ as a function of $\mathit M_{{{\mathit Z}^{\,'}}}$.
48  AAD 2023W set limits on a dark Higgs model with a spin-1 mediator ${{\mathit Z}^{\,'}}$ and a dark Higgs ${{\mathit s}}$. Dark Higgs ${{\mathit s}}$ is assumed to decay into ${{\mathit W}}{{\mathit W}}$. See their Fig. 9 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{s}}}}$ plane.
49  AAD 2023X set limits on ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}$ of ${{\mathit Z}^{\,'}}$ using four-muon final states in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 7 for limits in mass-coupling plane.
50  ADACHI 2023B search for ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ and decaying invisibly in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = 10.58 GeV. See their Fig. 3 and Fig. 4 for limits in mass-coupling plane.
51  ADACHI 2023F search for resonances decaying to ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ in ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ events in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at $\sqrt {s }$ = 10.58 GeV. See their Fig. 3 for limits on $\sigma \cdot{}B$.
52  HAYRAPETYAN 2023D search for ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ resonance produced in association with one or more ${{\mathit b}}$-jets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits in the mass-coupling plane of the ${{\mathit B}_{{{3}}}}-{{\mathit L}_{{{2}}}}{{\mathit Z}^{\,'}}$ model.
53  HAYRAPETYAN 2023G search for spin-0 and spin-1 resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in $pp$ collisions at $\sqrt {s }$ = 13 TeV in the mass ranges of $1.1 - 2.6$ GeV and $4.2 - 7.9$ GeV. See their Fig. 5 for limits on $\sigma \cdot{}B$.
54  LI 2023I limits on light ${{\mathit Z}^{\,'}}$ couplings are dervied from the steller cooling bounds in the mass range of $10^{4} - 10^{6}$ eV. See their Fig. 4 for limits on dark photon, ${{\mathit B}}-{{\mathit L}}$, ${{\mathit L}_{{{\mu}}}}-{{\mathit L}_{{{\tau}}}}$, and ${{\mathit L}_{{{e}}}}-{{\mathit L}}_{{{\mathit \mu}}({{\mathit \tau}})}$ models.
55  MANZARI 2023 study supernova cooling induced by the emission of light dark fermions ${{\mathit \chi}}$ assumed to couple with leptons via a new massive vector boson ${{\mathit Z}^{\,'}}$. See their Figs. 4 and 5 for limits in mass-coupling plane.
56  AAD 2022 search for ${{\mathit b}}{{\overline{\mathit b}}}{{\mathit Z}^{\,'}}$ productions in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into ${{\mathit b}}{{\overline{\mathit b}}}$. See their Fig.4 for limits on $\sigma \cdot{}B$.
57  AAD 2022D search for DM mediator ${{\mathit Z}^{\,'}}$ produced in association with a ${{\mathit Z}}$ boson in $pp$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$. See their Fig. 4 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−\mathit M_{{{\mathit \chi}}}$ plane.
58  ANDREEV 2022 search for missing energy in CERN NA64-e experiment. See their Fig. 7 for limits on couplings of $\mathit U(1)$ gauge ${{\mathit L}_{{{\mu}}}}−{{\mathit L}_{{{\tau}}}}{{\mathit Z}^{\,'}}$ models, in the mass range of 1 MeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 600 MeV with the kinetic ${{\mathit Z}^{\,'}}−{{\mathit \gamma}}$ mixing being determined by ${{\mathit \mu}}$ and ${{\mathit \tau}}$ loops.
59  BONET 2022 obtain limits on ${{\mathit Z}^{\,'}}$ coupling from ${{\mathit \nu}}$-nucleus scattering data collected by the CONUS experiment at the nuclear power plant in Brokdorf. See their Fig. 5 for limits in mass-coupling plane.
60  COLOMA 2022 set limits on ${{\mathit Z}^{\,'}}$ coupling from ${{\mathit \nu}}$-nucleus and ${{\mathit \nu}}-{{\mathit e}}$ scattering data collected by a ${}^{}\mathrm {Ge}$ detector at the Dresden-II power reactor and the COHERENT experiment. See their Fig. 6 for limits in mass-coupling plane in the mass range of 1 keV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 5 GeV.
61  COLOMA 2022A use Borexino Phase-II spectral data to constrain ${{\mathit Z}^{\,'}}$ couplings. See their Fig. 5 for limits in mass-coupling plane in the mass range of 10 keV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 100 MeV.
62  CZANK 2022 search for ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions at and near ${{\mathit \Upsilon}}$ resonances. ${{\mathit Z}^{\,'}}$ is assumed to decay into ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. See their Fig. 8 for limits on ${{\mathit Z}^{\,'}}{{\mathit \mu}}{{\mathit \mu}}$ couplings.
63  TUMASYAN 2022AA search for ${{\mathit Z}^{\,'}}$ production in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into two "semivisible" jets (SVJ), i.e., collimated mixtures of visible and invisible particles. See their Fig. 7 and 8 for limits on $\sigma \cdot{}B$.
64  AAD 2021AQ limits are for a $\mathit B~−~L$ gauge boson model derived from their measurements on four-lepton differential cross sections. See their Fig. 13 for exclusion limits on the $\mathit B~−~L$ breaking Higgs boson mass.
65  AAD 2021AZ search for DM mediator ${{\mathit Z}^{\,'}}$ produced in association with a SM Higgs boson in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}}{{\mathit \chi}}$. See their Fig.7 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{\chi}}}}$ plane.
66  AAD 2021BB search for ${{\mathit Z}^{\,'}}$ productions in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into a SM Higgs boson ${{\mathit H}}$ and an invisible particle ${{\mathit A}}$. See their Fig.7 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{A}}}}$ plane.
67  AAD 2021D set limits on a dark Higgs model with a spin-1 mediator ${{\mathit Z}^{\,'}}$ and a scalar dark Higgs boson ${{\mathit s}}$. Dark Higgs ${{\mathit s}}$ is assumed to decay into ${{\mathit W}}{{\mathit W}}$ or ${{\mathit Z}}{{\mathit Z}}$. See their Fig.4 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{s}}}}$ plane.
68  AAD 2021K search for ${{\mathit \gamma}}$ + $\not E_T$ events in ${{\mathit p}}{{\mathit p}}$ collision at $\sqrt {s }$ = 13 TeV. See their Fig. 5 for limits on ${{\mathit Z}^{\,'}}$ particle invisibly decaying to ${{\mathit \chi}}{{\mathit \chi}}$.
69  BURAS 2021 performed global fit to leptophilic ${{\mathit Z}^{\,'}}$ models using a large number of observables.
70  CADEDDU 2021 obtain limits on ${{\mathit Z}^{\,'}}$ coupling ${{\mathit g}}_{{{\mathit Z}^{\,'}}}$ from coherent ${{\mathit \nu}}$-nucleus scattering data collected by COHERENT experiment. For limits in the ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit g}}_{{{\mathit Z}^{\,'}}}$ plane, see their Figures 3 and 4 for the universal ${{\mathit Z}^{\,'}}$ model and Figures 5 and 6 for the ${{\mathit B}}−{{\mathit L}}$ model.
71  COLARESI 2021 obtain limits on ${{\mathit Z}^{\,'}}$ coupling from coherent ${{\mathit \nu}}$-nucleus scattering data collected by a ${}^{}\mathrm {Ge}$ detector at the Dresden-II power reactor. See their Fig.7 for limits in mass-coupling plane.
72  KRIBS 2021 set decay-agnostic limits on kinetic mixing parameter between U(1)$_{Y}$ field and new heavy abelian vector boson (dark photon) field using the HERA ${{\mathit e}}{{\mathit p}}$ collision data. See their Fig. 3 for limits in mass-mixing plane.
73  TUMASYAN 2021D search for energetic jets + $\not E_T$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. ${{\mathit Z}^{\,'}}$ is assumed to decay into a pair of invisible particles ${{\mathit \chi}}{{\mathit \chi}}$. See their Fig. 7 for limits on signal strength in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−{{\mathit M}_{{{\chi}}}}$ plane, and Fig. 8 for limits on signal strength in quark and dark matter coupling vs mediator mass.
74  AAD 2020AF search for resonances decaying to ${{\mathit H}}{{\mathit \gamma}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 1c for limits on $\sigma \cdot{}B$ for the mass range 0.7 $<$ ${\mathit m}_{{{\mathit Z}^{\,'}}}$ $<$ 4 TeV.
75  AAD 2020T search for Dark Matter mediator ${{\mathit Z}^{\,'}}$ decaying invisibly or decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 5 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−{{\mathit g}_{{{q}}}}$ plane from the inclusive category. See their Fig. 7(a) for limits on the product of the cross section, acceptance, ${{\mathit b}}$-tagging efficiency, and branching fraction from the 2 ${{\mathit b}}$-tag category.
76  AAD 2020W search for a Dark Matter (DM) simplified model ${{\mathit Z}^{\,'}}$ produced in association with ${{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 5 for limits on ${{\mathit Z}^{\,'}}$ production cross section.
77  AAIJ 2020AL search for spin-0 and spin-1 resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the mass regions M$_{{{\mathit Z}^{\,'}}}$ $<$ 60 GeV, with non-negligible widths considered above 20 GeV. See their Figs. 7, 8, and 9 for limits on $\sigma \cdot{}B$.
78  ADACHI 2020 search for production of ${{\mathit Z}^{\,'}}$ in ${{\mathit e}^{+}}{{\mathit e}^{-}}$ collisions. The ${{\mathit Z}^{\,'}}$ is assume to decay invisibly. See their Fig. 3 and Fig. 5 for limits on ${{\mathit Z}^{\,'}}$ coupling and ${\mathit \sigma (}{{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{\pm}}{{\mathit \mu}^{\mp}}{{\mathit Z}^{\,'}}{)}$.
79  SIRUNYAN 2020AI search for broad resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 11 for exclusion limits in mass-coupling plane.
80  SIRUNYAN 2020AQ search for a narrow resonance lighter than 200 GeV decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 3 for limits on ${{\mathit Z}^{\,'}}$ kinetic mixing coefficient.
81  SIRUNYAN 2020M search for a narrow resonance with a mass between 350 and 700 GeV in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig.3 for exclusion limits in mass-coupling plane.
82  AABOUD 2019AJ search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for a new resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ and produced in association with a high $p_T$ photon. For a leptophobic axial-vector ${{\mathit Z}^{\,'}}$ in the mass region 250 GeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 950 GeV, the ${{\mathit Z}^{\,'}}$ coupling with quarks ${{\mathit g}_{{{q}}}}$ is constrained below 0.18. See their Fig.2 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−{{\mathit g}_{{{q}}}}$ plane.
83  AABOUD 2019D search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for a new resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ and produced in association with a high-$p_T$ photon or jet. For a leptophobic axial-vector ${{\mathit Z}^{\,'}}$ in the mass region 100 GeV $<$ $\mathit M_{{{\mathit Z}^{\,'}}}$ $<$ 220 GeV, the ${{\mathit Z}^{\,'}}$ coupling with quarks ${{\mathit g}_{{{q}}}}$ is constrained below 0.23. See their Fig. 6 for limits in $\mathit M_{{{\mathit Z}^{\,'}}}−{{\mathit g}_{{{q}}}}$ plane.
84  AABOUD 2019V search for Dark Matter simplified ${{\mathit Z}^{\,'}}$ decaying invisibly or decaying to fermion pair in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV.
85  AAD 2019L search for resonances decaying to ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 4 for limits in the heavy vector triplet model couplings.
86  LONG 2019 uses the weak charge data of Cesium and proton to constrain mass of ${{\mathit Z}^{\,'}}$ in the 3-3-1 models.
87  PANDEY 2019 obtain limits on ${{\mathit Z}^{\,'}}$ induced neutrino non-standard interaction (NSI) parameter $\epsilon $ from LHC and IceCube data. See their Fig.2 for limits in ${{\mathit M}}_{{{\mathit Z}^{\,'}}}−\epsilon $ plane, where $\epsilon $ = ${{\mathit g}_{{{q}}}}{{\mathit g}}_{{{\mathit \nu}}}$ v${}^{2}$ $/$ (2 ${{\mathit M}}{}^{2}_{{{\mathit Z}^{\,'}}}$).
88  SIRUNYAN 2019AL search for a new resonance decaying to a top quark and a heavy vector-like top partner in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 8 for limits on ${{\mathit Z}^{\,'}}$ production cross section.
89  SIRUNYAN 2019AN search for a Dark Matter (DM) simplified model ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit H}}$ DM DM in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their Fig. 7 for limits on the signal strength modifiers.
90  SIRUNYAN 2019CB search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV for a new resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$. For a leptophobic ${{\mathit Z}^{\,'}}$ in the mass region $50 - 300$ GeV, the ${{\mathit Z}^{\,'}}$ coupling with quarks ${{\mathit g}_{{{q}}}^{\,'}}$ is constrained below 0.2. See their Figs. 4 and 5 for limits on ${{\mathit g}_{{{q}}}^{\,'}}$ in the mass range 50 $<$ ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ $<$ 450 GeV.
91  SIRUNYAN 2019CD search in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=13 TeV for a leptophobic ${{\mathit Z}^{\,'}}$ produced in association of high $p_T$ ISR photon and decaying to ${{\mathit q}}{{\overline{\mathit q}}}$. See their Fig. 2 for limits on the ${{\mathit Z}^{\,'}}$ coupling strength ${{\mathit g}_{{{q}}}^{\,'}}$ to ${{\mathit q}}{{\overline{\mathit q}}}$ in the mass range between 10 and 125 GeV.
92  SIRUNYAN 2019D search for a narrow neutral vector resonance decaying to ${{\mathit H}}{{\mathit \gamma}}$. See their Fig. 3 for exclusion limit in $\mathit M_{{{\mathit Z}^{\,'}}}−\sigma \cdot{}\mathit B$ plane. Upper limits on the production of ${{\mathit H}}{{\mathit \gamma}}$ resonances are set as a function of the resonance mass in the range of $720 - 3250$ GeV.
93  AABOUD 2018AA search for a narrow neutral vector boson decaying to ${{\mathit H}}{{\mathit \gamma}}$. See their Fig. 10 for the exclusion limit in M$_{{{\mathit Z}^{\,'}}}$ $−$ $\sigma $B plane.
94  AABOUD 2018CJ search for heavy-vector-triplet $Z'$ in $pp$ collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for model with $g_V=3$ assuming $M_{Z'}=M_{W'}$. The limit becomes $M_{Z'}>5500$ GeV for model with $g_V=1$.
95  AABOUD 2018N search for a narrow resonance decaying to ${{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV using trigger level analysis to improve the low mass region sensitivity. See their Fig. 5 for limits in the mass-coupling plane in the ${{\mathit Z}^{\,'}}$ mass range $450 - 1800$ GeV.
96  AAIJ 2018AQ search for spin-0 and spin-1 resonances decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 7 and 8 TeV in the mass region near 10 GeV. See their Figs. 4 and 5 for limits on $\sigma \cdot{}\mathit B$.
97  SIRUNYAN 2018DR searches for ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ resonances produced in association with ${{\mathit b}}$-jets in the ${{\mathit p}}{{\mathit p}}$ collision data with $\sqrt {s }$ = 8 TeV and 13 TeV. An excess of events near ${\mathit m}_{\mathrm {{{\mathit \mu}} {{\mathit \mu}}}}$ = 28 GeV is observed in the 8 TeV data. See their Fig. 3 for the measured fiducial signal cross sections at $\sqrt {s }$ = 8 TeV and the 95$\%$ CL upper limits at $\sqrt {s }$ = 13 TeV.
98  SIRUNYAN 2018G search for a new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV in the mass range $50 - 300$ GeV. See their Fig.7 for limits in the mass-coupling plane.
99  SIRUNYAN 2018I search for a narrow resonance decaying to ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV using dedicated b-tagged dijet triggers to improve the sensitivity in the low mass region. See their Fig. 3 for limits on $\sigma \cdot{}{{\mathit B}}$ in the ${{\mathit Z}^{\,'}}$ mass range $325 - 1200$ GeV.
100  AABOUD 2017B search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ (${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$, ${{\mathit c}}{{\overline{\mathit c}}}$; ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes ${{\mathit M}}_{{{\mathit Z}^{\,'}}}>$ 1490 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume ${{\mathit M}}_{{{\mathit Z}^{\,'}}}$ = ${{\mathit M}}_{{{\mathit W}^{\,'}}}$, the limit increases ${{\mathit M}}_{{{\mathit Z}^{\,'}}}>$ 2310 GeV and ${{\mathit M}}_{{{\mathit Z}^{\,'}}}>$ 1730 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.3 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
101  KHACHATRYAN 2017AX search for lepto-phobic resonances decaying to four leptons in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV.
102  KHACHATRYAN 2017U search for resonances decaying to ${{\mathit H}}{{\mathit Z}}$ (${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$; ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$, ${{\mathit \nu}}{{\overline{\mathit \nu}}}$) in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit on the heavy-vector-triplet model is $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$ $>$ 2 TeV for ${{\mathit g}_{{{V}}}}$ = 3, in which constraints from the ${{\mathit W}^{\,'}}$ $\rightarrow$ ${{\mathit H}}{{\mathit W}}$ (${{\mathit H}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$; ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}$) are combined. See their Fig.3 and Fig.4 for limits on $\sigma \cdot{}\mathit B$.
103  SIRUNYAN 2017A search for resonances decaying to ${{\mathit W}}{{\mathit W}}$ with ${{\mathit W}}$ ${{\mathit W}}$ $\rightarrow$ ${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$, ${{\mathit q}}{{\overline{\mathit q}}}{{\mathit q}}{{\overline{\mathit q}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3. The limit becomes $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 1600 GeV for ${{\mathit g}_{{{V}}}}$ = 1. If we assume $\mathit M_{{{\mathit Z}^{\,'}}}$ = $\mathit M_{{{\mathit W}^{\,'}}}$, the limit increases $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2400 GeV and $\mathit M_{{{\mathit Z}^{\,'}}}$ $>$ 2300 GeV for ${{\mathit g}_{{{V}}}}$ = 3 and ${{\mathit g}_{{{V}}}}$ = 1, respectively. See their Fig.6 for limits on $\sigma \cdot{}\mathit B$.
104  SIRUNYAN 2017AP search for resonances decaying into a SM-like Higgs scalar ${{\mathit H}}$ and a light pseudo scalar ${{\mathit A}}$. ${{\mathit A}}$ is assumed to decay invisibly. See their Fig.9 for limits on ${{\mathit \sigma}}\cdot{}{{\mathit B}}$.
105  SIRUNYAN 2017T search for a new resonance decaying to dijets in $pp$ collisions at $\sqrt {s }$ = 13 TeV in the mass range $100 - 300$ GeV. See their Fig.3 for limits in the mass-coupling plane.
106  SIRUNYAN 2017V search for a new resonance decaying to a top quark and a heavy vector-like top partner ${{\mathit T}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. See their table 5 for limits on the ${{\mathit Z}^{\,'}}$ production cross section for various values of $\mathit M_{{{\mathit Z}^{\,'}}}$ and $\mathit M_{T}$ in the range of $\mathit M_{{{\mathit Z}^{\,'}}}$ = $1500 - 2500$ GeV and $\mathit M_{T}$ = $700 - 1500$ GeV.
107  AABOUD 2016 search for a narrow resonance decaying into ${{\mathit b}}{{\overline{\mathit b}}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ with SM-like couplings to quarks. See their Fig.6 for limits on $\sigma \cdot{}\mathit B$.
108  AAD 2016L search for ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\mathit a}}{{\mathit \gamma}}$ , ${{\mathit a}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. See their Table 6 for limits on $\sigma \cdot{}\mathit B$.
109  AAD 2016S search for a new resonance decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above is for a leptophobic ${{\mathit Z}^{\,'}}$ having coupling strength with quark ${{\mathit g}_{{{q}}}}$ = 0.3 and is taken from their Figure 3.
110  KHACHATRYAN 2016AP search for a resonance decaying to ${{\mathit H}}{{\mathit Z}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. Both ${{\mathit H}}$ and ${{\mathit Z}}$ are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet ${{\mathit Z}^{\,'}}$ with ${{\mathit g}_{{{V}}}}$ = 3.
111  KHACHATRYAN 2016E search for a leptophobic top-color ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. The quoted limit assumes that ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012. Also ${\mathit m}_{{{\mathit Z}^{\,'}}}$ $<$ 2.9 TeV is excluded for wider topcolor ${{\mathit Z}^{\,'}}$ with ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.1.
112  AAD 2015AO search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. See Fig. 11 for limit on $\sigma \mathit B$.
113  AAD 2015AT search for monotop production plus large missing $\mathit E_{T}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV and give constraints on a ${{\mathit Z}^{\,'}}$ model having ${{\mathit Z}^{\,'}}{{\mathit u}}{{\overline{\mathit t}}}$ coupling. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly. See their Fig. 6 for limits on $\sigma \cdot{}\mathit B$.
114  AAD 2015CD search for decays of Higgs bosons to 4 ${{\mathit \ell}}$ states via ${{\mathit Z}^{\,'}}$ bosons, ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ or ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$. See Fig. 5 for the limit on the signal strength of the ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ process and Fig. 16 for the limit on ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}^{\,'}}{{\mathit Z}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$.
115  KHACHATRYAN 2015F search for monotop production plus large missing $\mathit E_{T}$ events in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV and give constraints on a ${{\mathit Z}^{\,'}}$ model having ${{\mathit Z}^{\,'}}{{\mathit u}}{{\overline{\mathit t}}}$ coupling. ${{\mathit Z}^{\,'}}$ is assumed to decay invisibly. See Fig. 3 for limits on $\sigma \mathit B$.
116  KHACHATRYAN 2015O search for narrow ${{\mathit Z}^{\,'}}$ resonance decaying to ${{\mathit Z}}{{\mathit H}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. See their Fig. 6 for limit on $\sigma \mathit B$.
117  AAD 2014AT search for a narrow neutral vector boson decaying to ${{\mathit Z}}{{\mathit \gamma}}$. See their Fig. 3b for the exclusion limit in ${\mathit m}_{{{\mathit Z}^{\,'}}}−\sigma \mathit B$ plane.
118  KHACHATRYAN 2014A search for new resonance in the ${{\mathit W}}{{\mathit W}}$ (${{\mathit \ell}}{{\mathit \nu}}{{\mathit q}}{{\overline{\mathit q}}}$) and the ${{\mathit Z}}{{\mathit Z}}$ (${{\mathit \ell}}{{\mathit \ell}}{{\mathit q}}{{\overline{\mathit q}}}$) channels using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=8 TeV. See their Fig.13 for the exclusion limit on the number of events in the mass-width plane.
119  MARTINEZ 2014 use various electroweak data to constrain the ${{\mathit Z}^{\,'}}$ boson in the 3-3-1 models.
120  AAD 2013AQ search for a leptophobic top-color ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. The quoted limit assumes that ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012.
121  CHATRCHYAN 2013BM search for top-color ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=8 TeV. The quoted limit is for ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012.
122  CHATRCHYAN 2013AP search for top-color leptophobic ${{\mathit Z}^{\,'}}$ decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. The quoted limit is for ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$ = 0.012.
123  AAD 2012BV search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. See their Fig. 7 for limit on $\sigma \cdot{}$B.
124  AAD 2012K search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$ using ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$=7 TeV. See their Fig. 5 for limit on $\sigma \cdot{}$B.
125  AALTONEN 2012AR search for chromophilic ${{\mathit Z}^{\,'}}$ in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions at $\sqrt {s }$ = 1.96 TeV. See their Fig. 5 for limit on $\sigma \cdot{}$B.
126  AALTONEN 2012N search for ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit t}}{{\mathit Z}^{\,'}}$, ${{\mathit Z}^{\,'}}$ $\rightarrow$ ${{\overline{\mathit t}}}{{\mathit u}}$ events in ${{\mathit p}}{{\overline{\mathit p}}}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot{}$B.
127  ABAZOV 2012R search for top-color ${{\mathit Z}^{\,'}}$ boson decaying exclusively to ${{\mathit t}}{{\overline{\mathit t}}}$. The quoted limit is for ${\Gamma}_{{\mathit Z}^{\,'}}/{\mathit m}_{{{\mathit Z}^{\,'}}}$= 0.012.
128  CHATRCHYAN 2012AI search for ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit t}}{{\mathit t}}$ events and give constraints on a ${{\mathit Z}^{\,'}}$ model having ${{\mathit Z}^{\,'}}{{\overline{\mathit u}}}{{\mathit t}}$ coupling. See their Fig. 4 for the limit in mass-coupling plane.
129  Search for resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig. 6 for limit on $\sigma \cdot{}$B.
130  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig. 4 for limit on $\sigma \cdot{}$B.
131  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig. 3 for limit on $\sigma \cdot{}$B.
132  CHATRCHYAN 2011O search for same-sign top production in ${{\mathit p}}{{\mathit p}}$ collisions induced by a hypothetical FCNC ${{\mathit Z}^{\,'}}$ at $\sqrt {s }$ = 7 TeV. See their Fig. 3 for limit in mass-coupling plane.
133  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig.$~$3 for limit on $\sigma \cdot{}$B.
134  Search for narrow resonance decaying to ${{\mathit t}}{{\overline{\mathit t}}}$. See their Fig.$~$2 for limit on $\sigma \cdot{}$B.
135  BARGER 2003B use the nucleosynthesis bound on the effective number of light neutrino $\delta \mathit N_{{{\mathit \nu}}}$. See their Figs.$~4 - 5$ for limits in general $\mathit E_{6}$ motivated models.
136  CHO 2000 use various electroweak data to constrain ${{\mathit Z}^{\,'}}$ models assuming ${\mathit m}_{{{\mathit H}}}$=100 GeV. See Fig.$~$2 for limits in general $\mathit E_{6}$-motivated models.
137  CHO 1998 study constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, assuming no ${{\mathit Z}}-{{\mathit Z}^{\,'}}$ mixing.
138  Search for ${{\mathit Z}^{\,'}}$ decaying to dijets at $\sqrt {\mathit s }=1.8$ TeV. For ${{\mathit Z}^{\,'}}$ with electromagnetic strength coupling, no bound is obtained.
References